Skip to content

Simuler des hypothèses avec un jumeau numérique intelligent pour DDMRP

La solution Intelligent Digital Twin DDMRP de Simio transforme la planification de la fabrication et de la chaîne d’approvisionnement grâce à l’intégration transparente de la planification des besoins matériels en fonction de la demande avec des capacités avancées de scénarios de simulation, permettant aux organisations de visualiser les résultats avant la mise en œuvre tout en maximisant l’efficacité opérationnelle à travers des chaînes d’approvisionnement complexes.

Simio a été certifié par le Demand Driven Institute (DDI) pour les trois niveaux de conformité logicielle pour Demand Driven Material Requirements Planning (DDMRP), Demand Driven Operating Model (DDOM) et Demand Driven Sales & Operations Planning (DDS&OP).

Qu’est-ce que le DDMRP ?

Le Demand Driven Material Requirements Planning (DDMRP) est une méthodologie formelle de planification et d’exécution à plusieurs échelons conçue pour les chaînes d’approvisionnement volatiles d’aujourd’hui. Elle protège et favorise le flux d’informations pertinentes dans des environnements incertains, complexes et ambigus (VUCA).

Cette approche innovante est le fruit de recherches approfondies menées dans divers secteurs industriels. Elle répond directement aux défis posés par les réseaux d’approvisionnement modernes et mondialisés, dont la demande est imprévisible.

DDMRP positionne et dimensionne stratégiquement les stocks tampons de découplage afin de gérer efficacement les délais d’approvisionnement des clients. Ces stocks tampons stratégiques réduisent l’impact de la variabilité tout en améliorant le flux de produits et d’informations de bout en bout.

Cette méthodologie permet de mettre en place un modèle opérationnel basé sur les flux, contrairement à l’approche traditionnelle basée sur les coûts utilisée par la plupart des entreprises aujourd’hui. Grâce à la synchronisation des flux de matières et d’informations, le DDMRP élimine efficacement l’effet de fouet sur l’ensemble de la chaîne d’approvisionnement.

Le DDMRP combine trois facteurs clés de l’industrie

  • Intégration de la planification : Principes de planification des besoins matériels (MRP) et de planification des besoins de distribution (DRP) adaptés aux chaînes d’approvisionnement modernes.
  • Méthodologies de la traction : Les méthodes Lean et la théorie des contraintes mettent l’accent sur la visibilité et l’exécution en flux tendu.
  • Gestion de la variabilité : Approches Six Sigma pour la réduction systématique de la variabilité dans le réseau d’approvisionnement

Le DDMRP repose sur trois hypothèses fondamentales

  • Incertitude de la demande : La demande, à l’exception des commandes explicites, est généralement inconnue et sujette à de fréquents changements.
  • Compression du temps : L’écart entre les délais cumulés et les délais de tolérance des clients nécessite des stocks tampons stratégiques.
  • Variabilité de l’exécution : Il y aura toujours une variabilité dans l’exécution qui nécessitera des approches de planification adaptatives.

L’évolution et non la révolution

  • Renforcement des connaissances : Pour les praticiens expérimentés de la planification, le DDMRP s’appuie sur les connaissances existantes plutôt que de les remplacer.
  • Approche intégrée : Le DDMRP incorpore des principes établis pour relever les défis spécifiques des chaînes d’approvisionnement modernes.
  • Méthodologie améliorée : L’approche améliore la planification traditionnelle avec des solutions innovantes pour répondre aux demandes opérationnelles contemporaines.

Simulation de jumeaux numériques : Transformer la mise en œuvre du DDMRP

La technologie des jumeaux numériques crée des répliques virtuelles des environnements physiques de la chaîne d’approvisionnement, offrant une visibilité sans précédent sur la dynamique opérationnelle. Ces modèles intelligents permettent de simuler en temps réel des réseaux d’approvisionnement complexes et des flux de matières.

Grâce à la simulation avancée de jumeaux numériques, les planificateurs peuvent tester des scénarios avant de les mettre en œuvre. Cette capacité réduit considérablement le risque opérationnel tout en optimisant les stratégies de stockage et les politiques de réapprovisionnement.

L’intégration du logiciel de jumeau numérique avec les méthodologies DDMRP crée une plateforme puissante pour l’optimisation de la chaîne d’approvisionnement. Les organisations peuvent évaluer d’autres configurations et tester divers scénarios de demande sans perturber les opérations réelles.

Cette approche fondée sur la simulation garantit une efficacité maximale de la mise en œuvre du DDMRP tout en minimisant les risques de mise en œuvre et les besoins en ressources.

Comment les jumeaux numériques améliorent la mise en œuvre du DDMRP

Les mises en œuvre traditionnelles du DDMRP apportent des améliorations précieuses, mais les jumeaux numériques intelligents font passer ces capacités au niveau supérieur. En créant une réplique virtuelle des systèmes de la chaîne d’approvisionnement qui se met à jour en temps réel, les jumeaux numériques permettent une mise en œuvre plus dynamique et plus précise du DDMRP.

DDMRP traditionnel

  • Calculs de la mémoire tampon statique
  • Réglages manuels de la mémoire tampon
  • Cycles de révision périodique
  • Visibilité limitée dans la chaîne d’approvisionnement
  • Réaction aux changements après qu’ils se soient produits
  • Isolé des autres systèmes

Jumelage numérique intelligent DDMRP

  • Optimisation dynamique de la mémoire tampon
  • Gestion de la mémoire tampon pilotée par l’IA
  • Contrôle continu en temps réel
  • Visibilité de la chaîne d’approvisionnement de bout en bout
  • Adaptation prévisionnelle aux changements émergents
  • Connecté aux systèmes ERP, MES et IoT

L’intégration du logiciel de jumeau numérique avec les méthodologies DDMRP crée une plateforme puissante pour l’optimisation de la chaîne d’approvisionnement. Les organisations peuvent évaluer d’autres configurations et tester divers scénarios de demande sans perturber les opérations réelles.

Cette approche fondée sur la simulation garantit une efficacité maximale de la mise en œuvre du DDMRP tout en minimisant les risques de mise en œuvre et les besoins en ressources.

DDMRP : une solution de simulation intelligente pour les jumeaux numériques : Simulation intelligente de jumeaux numériques

Un jumeau numérique de processus adaptatif intelligent alimenté par la technologie de simulation d’événements discrets de Simio crée une plate-forme idéale pour la mise en œuvre du DDMRP. Cette solution avancée de jumeau numérique permet de concevoir, de tester, d’optimiser et d’exécuter des méthodologies de planification des besoins matériels en fonction de la demande.

L’environnement de simulation permet aux organisations de visualiser les résultats de diverses stratégies de réapprovisionnement avant leur mise en œuvre physique. Cette approche réduit considérablement les risques de mise en œuvre tout en maximisant les avantages opérationnels.

Le logiciel de jumeau numérique de Simio offre un support complet pour tous les composants et processus DDMRP. La plateforme comprend des fonctions spécialisées développées pour modéliser avec précision toute option de réapprovisionnement DDMRP au sein d’installations de fabrication mono ou multi-sites et de chaînes d’approvisionnement complexes.

Les organisations peuvent simuler des scénarios détaillés avec une précision remarquable, générant ainsi des informations basées sur des données pour des décisions optimales de mise en œuvre du DDMRP.

Accélérer le développement des jumeaux numériques de la chaîne d’approvisionnement manufacturière

  • Gestion des données structurées : Des tables de données relationnelles prédéfinies gèrent les entrées dans les modèles Simio Process Digital Twin, éliminant ainsi les approximations lors de la configuration du DDMRP.
  • Bibliothèque de la chaîne d’approvisionnement : Une bibliothèque personnalisable adaptée à la simulation de la chaîne d’approvisionnement accélère le développement du jumeau numérique avec des objets représentant tous les composants physiques du réseau.
  • Calculateurs DDMRP : Des calculateurs spécialisés déterminent les données clés permettant de dimensionner les stocks tampons stratégiques et de générer des commandes d’approvisionnement, y compris les valeurs ADU et les calculs de zones tampons.
  • Gestion de scénarios : Les outils de simulation permettent de configurer et de comparer rapidement des stratégies alternatives de DDMRP par le biais de la simulation de jumeaux numériques.

Fonctionnalités personnalisées pour la simulation des plans DDMRP et l’analyse des performances

  • Réapprovisionnement dynamique : Les politiques de réapprovisionnement MRP en fonction de la demande s’appliquent à chaque stock tampon stratégique, en déterminant le moment optimal de la commande par simulation.
  • Modélisation des processus : Les modèles Digital Twin comprennent des objets détaillés d’entrepôt, d’usine, de fournisseur et de livraison qui correspondent précisément aux processus d’exécution des commandes dans le monde réel.
  • Tableaux de bord des performances : Des tableaux de bord personnalisés et configurables, spécifiques au DDMRP, fournissent des informations expertes sur les performances opérationnelles simulées.
  • Analyses complètes : Les tableaux de bord prédéfinis comprennent les diagrammes de planification DDMRP, l’utilisation des ressources, les calendriers de production, les indicateurs clés de performance, l’analyse des contraintes et la comparaison des scénarios.

La simulation change la donne pour la mise en œuvre du DDMRP

Imaginez que vous puissiez gérer votre chaîne d’approvisionnement en temps réel grâce à un jumeau numérique intelligent. Imaginez des simulations détaillées qui révèlent les performances de votre chaîne d’approvisionnement avant que les décisions de mise en œuvre ne soient prises.

Imaginez la conception d’une chaîne d’approvisionnement axée sur la demande qui génère des plans opérationnels atteignant des performances inégalées grâce à des tests de scénarios fondés sur des données probantes.

Un jumeau numérique complet de votre chaîne d’approvisionnement de fabrication offre précisément cette capacité. Alimenté par la plateforme de simulation avancée de Simio et intégré à la méthodologie DDMRP, il transforme la planification et l’exécution de la chaîne d’approvisionnement.

L’efficacité réside dans le puissant moteur de simulation de Simio qui exploite une réplique numérique détaillée de l’ensemble de votre réseau d’approvisionnement. La simulation englobe tout, depuis la génération de commandes d’approvisionnement avec DDMRP jusqu’à la livraison finale, en passant par l’approvisionnement, l’ordonnancement et l’exécution.

Étapes de la simulation de scénarios d’hypothèses dans votre chaîne d’approvisionnement de type « jumeau numérique » :

Étape 1 : Génération d’une commande d’approvisionnement

La simulation de jumeau numérique surveille et met à jour en permanence les positions de stock de chaque tampon stratégique. Elle intègre les données clés du DDMRP, telles que la taille des zones tampons et les calculs de la demande de pointe qualifiée.

Diverses stratégies de dimensionnement de la mémoire tampon peuvent être testées dans l’environnement de simulation. Cette approche permet de déterminer les configurations DDMRP optimales avant la mise en œuvre physique.

Étape 2 : Simulation d’inventaire

Le jumeau numérique simule des examens continus ou périodiques des stocks à l’aide de politiques de réapprovisionnement DDMRP. À chaque cycle de révision, le modèle évalue la position du flux net par rapport au seuil de la zone verte.

Cette simulation permet de déterminer le calendrier et les quantités optimales de réapprovisionnement en fonction de divers scénarios de demande. Le jumeau numérique permet de tester différentes fréquences de révision afin d’optimiser les performances du tampon.

Étape 3 : Optimisation de la politique d’approvisionnement

Dans l’environnement de simulation, les politiques d’approvisionnement en stocks déterminent la classification et l’acheminement des commandes. Le jumeau numérique fait la distinction entre les ordres de fabrication, d’achat et de transfert de stock sur la base de règles configurables.

D’autres stratégies d’approvisionnement peuvent être testées afin d’identifier l’approche la plus efficace pour différentes conditions opérationnelles. Cette capacité de simulation permet d’optimiser l’ensemble du réseau d’approvisionnement.

Étape 4 : Décisions dynamiques en matière d’approvisionnement

Le jumeau numérique permet de prendre des décisions d’approvisionnement en temps réel pour les commandes de fournitures au moment où une commande est générée. Cette capacité de simulation facilite à la fois le réapprovisionnement en fonction de la demande et les stratégies d’approvisionnement dynamiques.

Les approches de réseaux neuronaux basées sur l’IA améliorent les décisions d’approvisionnement en utilisant des délais de livraison prédits de manière dynamique. La simulation identifie les schémas d’approvisionnement optimaux qui maximisent les niveaux de service tout en minimisant les coûts.

Étape 5 : Simulation du processus d’exécution

Dès qu’une décision d’approvisionnement est prise dans la simulation, une commande est acheminée vers le site sélectionné. Le jumeau numérique capture les contraintes de ressources détaillées et la logique d’ordonnancement nécessaires à l’exécution de la commande.

Cette simulation permet de visualiser les goulets d’étranglement potentiels avant qu’ils ne se manifestent dans le système physique. Les organisations peuvent tester d’autres stratégies d’exécution afin d’optimiser l’exécution du DDMRP.

Étape 6 : Simulation de livraison

Lorsqu’un ordre d’approvisionnement simulé termine la production, le jumeau numérique modélise l’ensemble du processus de livraison. Les modes de transport, les itinéraires et les temps de transit sont simulés avec des niveaux de détail configurables.

Le modèle peut aller d’un simple temps de retard à des descriptions complexes de réseaux de transport. Cette capacité de simulation permet d’optimiser l’ensemble du réseau logistique soutenant la mise en œuvre du DDMRP.

L’image ci-dessous illustre les étapes de la méthodologie DDMRP appliquée à une simulation de chaîne d’approvisionnement manufacturière.

Intelligent Digital Twin Difference in DDMRP

La différence du jumeau numérique intelligent dans la mise en œuvre du DDMRP

L’intégration de la technologie du jumeau numérique intelligent avec la planification des besoins en matériel pilotée par la demande crée une plateforme de transformation pour l’excellence de la chaîne d’approvisionnement. La simulation de jumeaux numériques offre une visibilité sans précédent sur les opérations DDMRP avant leur mise en œuvre.

Les organisations peuvent identifier des stratégies optimales de stockage, tester diverses politiques de réapprovisionnement et évaluer des configurations alternatives de la chaîne d’approvisionnement par le biais de simulations détaillées. Cette approche réduit considérablement les risques de mise en œuvre tout en maximisant les avantages du DDMRP.

Le jumeau numérique devient un outil d’amélioration continue pour la mise en œuvre du DDMRP. À mesure que les conditions du marché évoluent et que de nouveaux défis apparaissent, les organisations peuvent tester des stratégies adaptatives dans l’environnement de simulation.

Cette capacité garantit que les mises en œuvre de DDMRP restent optimisées au fil du temps, offrant une excellence opérationnelle durable dans l’ensemble du réseau de la chaîne d’approvisionnement.

Soutenir la méthodologie complète axée sur la demande grâce à la simulation de jumeaux numériques

S&OP adaptatif avec la simulation de jumeaux numériques

La technologie du jumeau numérique de Simio permet une mise en œuvre complète du DDMRP dans le cadre d’un modèle opérationnel complet axé sur la demande. L’environnement de simulation englobe les horizons opérationnels, tactiques et stratégiques pour une couverture complète de la planification.

Les organisations peuvent configurer, planifier, programmer et simuler tous les aspects de la méthodologie DDMRP. Le jumeau numérique permet de tester des scénarios S&OP alternatifs afin d’identifier les stratégies optimales pour différentes conditions de marché.

Simulation d’entreprise adaptative pilotée par la demande

La technologie Intelligent Adaptive Process Digital Twin de Simio libère tout le potentiel du modèle Demand Driven Adaptive Enterprise. La plateforme de simulation permet d’optimiser la chaîne d’approvisionnement de bout en bout grâce à des capacités de jumelage numérique complètes.

Les organisations peuvent tester des scénarios de simulation dans l’ensemble de l’écosystème de l’entreprise. De l’approvisionnement en matériaux à la distribution finale en passant par la fabrication, le jumeau numérique identifie les configurations optimales pour une efficacité opérationnelle maximale.

Simulation de la distribution à la demande

La plateforme de jumeaux numériques de Simio offre un support complet pour la planification des besoins de distribution en fonction de la demande (DDDRP). La simulation se concentre sur les applications centrées sur la distribution dans le cadre de la méthodologie DDMRP.

Les organisations peuvent tester des stratégies de distribution alternatives, des emplacements tampons et des politiques de transport grâce à la simulation de jumeaux numériques. Cette capacité permet d’optimiser l’ensemble du réseau de distribution avant sa mise en œuvre physique, ce qui garantit une efficacité maximale de l’approche DDMRP.

 

Simio DDMRP Digital Twin Insights : Visualisez avant de mettre en œuvre

Vues de la planification : Simuler les stratégies de mémoire tampon DDMRP

Le tableau de bord de l’état des zones tampons pour la planification affiche les positions de flux net simulées (ligne noire) et les stocks disponibles (ligne bleue) au fil du temps. Le jumeau numérique montre comment les zones tampons répondent aux modèles de demande dans la simulation.

Chaque fois que la position du flux net tombe dans la zone jaune, la simulation génère automatiquement les ordres de réapprovisionnement appropriés. Cette capacité permet de tester et d’optimiser les stratégies de tampons DDMRP avant la mise en œuvre physique.

Vues d’exécution : Visualisez la dynamique opérationnelle du DDMRP

Le tableau de bord « Buffer Run Chart » permet de visualiser les stocks disponibles simulés (ligne bleue) par rapport aux fourchettes optimales (zone verte). Les zones jaunes indiquent des seuils d’alerte, tandis que les zones rouges indiquent des conditions d’excès ou de pénurie critique.

Le jumeau numérique offre une visibilité sans précédent sur la dynamique opérationnelle potentielle du DDMRP avant sa mise en œuvre. Les organisations peuvent identifier les difficultés d’exécution potentielles et optimiser les stratégies de gestion de la mémoire tampon grâce à la simulation.

Vues des KPI et de la performance : Prévoir l’excellence opérationnelle du DDMRP

Le tableau de bord de l’indice de capacité Taguchi évalue les performances simulées des implémentations DDMRP par rapport aux valeurs cibles et aux limites des spécifications. Les zones vertes représentent les 20 % les plus performants, les zones jaunes indiquent les 40 % intermédiaires et les zones rouges les 40 % les plus faibles.

La simulation du jumeau numérique permet de prédire les performances opérationnelles du DDMRP avant sa mise en œuvre. Les organisations peuvent identifier les problèmes de performance potentiels et optimiser la gestion des tampons grâce à une simulation fondée sur des données probantes.

Vues de l’utilisation des ressources : Optimiser la planification de la capacité DDMRP

Le tableau de bord de l’utilisation des ressources affiche l’utilisation simulée de la capacité des ressources au fil du temps. Cette visualisation indique clairement les besoins en ressources prévus dans le cadre de divers scénarios DDMRP.

Le jumeau numérique révèle les capacités excédentaires ou insuffisantes avant que les décisions de mise en œuvre ne soient prises. Les organisations peuvent équilibrer l’allocation des ressources avec des stratégies tampons DDMRP afin de garantir un flux synchronisé tout au long de la chaîne d’approvisionnement.

Vues de la capacité de l’entrepôt : Prévoir les besoins en espace du DDMRP

Le tableau de bord Capacité des entrepôts visualise l’utilisation simulée des centres de distribution et des entrepôts au sein du réseau DDMRP. La simulation met en évidence les seuils d’utilisation supérieurs à 80 % (jaune) et 90 % (rouge) pour l’aide à la décision.

Le jumeau numérique prédit les besoins en espace résultant des différentes stratégies de stockage tampon DDMRP avant leur mise en œuvre. Cette capacité garantit une capacité de stockage suffisante pour les stocks tampons stratégiques dans l’ensemble du réseau d’approvisionnement.

Vues de l’évaluation des coûts : Impacts financiers du projet DDMRP

Le tableau de bord des coûts d’exploitation affiche les coûts d’exploitation quotidiens simulés dans diverses configurations DDMRP. Le jumeau numérique comprend les coûts d’utilisation et d’inactivité par catégorie de ressources pour une analyse financière complète.

Cette capacité de simulation permet de projeter les impacts financiers de différentes stratégies DDMRP avant leur mise en œuvre. Les organisations peuvent équilibrer l’investissement dans les stocks et les coûts opérationnels afin de maximiser le retour sur investissement du DDMRP grâce à une prise de décision fondée sur des données probantes.

Vues de flux de matières : Visualisez la dynamique de la chaîne d’approvisionnement DDMRP

Le tableau de bord Matériaux affiche des modèles d’utilisation simulés pour les produits finis, les composants et les matières premières dans l’ensemble du réseau de la chaîne d’approvisionnement. La visualisation montre les quantités entrantes et sortantes au fil du temps pour chaque catégorie de matériaux.

Le jumeau numérique permet une visualisation complète de la dynamique de la chaîne d’approvisionnement dans diverses configurations DDMRP. Les entreprises peuvent identifier les problèmes potentiels de flux de matières avant la mise en œuvre et optimiser le placement des tampons en conséquence.

Contrainte Pareto : Identifiez les goulets d’étranglement DDMRP avant qu’ils ne se produisent

Le tableau de bord Pareto des contraintes révèle les contraintes simulées affectant la production et le transport au sein du réseau DDMRP. Le jumeau numérique classe les contraintes par type et par impact afin de cibler les efforts d’amélioration.

Cette capacité de simulation permet d’identifier les goulets d’étranglement potentiels avant qu’ils ne se manifestent dans le système physique. Les organisations peuvent ajuster les stratégies de tampons DDMRP et l’allocation des ressources pour faire face aux contraintes de manière proactive.

Vues d’ordonnancement : Scénarios de production DDMRP testés

Le plan de ressources de Gantt permet de visualiser la progression simulée des ordres de fabrication à travers les ressources du système dans diverses configurations DDMRP. Le jumeau numérique montre l’ordonnancement détaillé au niveau des ressources individuelles dans le réseau de production.

Cette capacité de simulation permet de tester des scénarios de production avant la mise en œuvre du DDMRP. Les organisations peuvent optimiser la programmation de la production en l’alignant sur les stratégies de tampons DDMRP pour une efficacité opérationnelle maximale.

L’avantage de Simio Digital Twin : Simulez DDMRP avant de l’implémenter

Lors de la mise en œuvre de la planification des besoins en matériaux pilotée par la demande, la possibilité de simuler et d’optimiser avant l’opération réelle offre des avantages transformateurs. La simulation de jumeaux numériques permet d’éviter les erreurs de mise en œuvre coûteuses et élimine les expérimentations risquées dans votre usine ou votre chaîne d’approvisionnement.

Cette approche garantit le succès du DDMRP dès le premier jour grâce à une configuration et une optimisation fondées sur des données probantes.

La technologie Intelligent Adaptive Process Digital Twin de Simio fournit un support complet pour les tests de scénarios DDMRP. La simulation couvre le cycle de vie complet de la planification axée sur la demande, de la mise en place de tampons stratégiques à l’exécution tactique.

Cette capacité garantit que votre mise en œuvre du DDMRP reste agile et efficace, même dans les environnements de chaîne d’approvisionnement les plus difficiles.

Simuler des scénarios DDMRP avant la mise en œuvre
Intégrer les systèmes ERP pour une simulation DDMRP basée sur les données
Connexion avec MES et IoT pour des mises à jour en temps réel du jumeau numérique
Optimiser l’utilisation future des ressources grâce à la simulation DDMRP
Visualisez la dynamique complète du système de la chaîne d’approvisionnement DDMRP
Soutenir l’analyse des paramètres DDOM par le biais de la simulation de jumeaux numériques
Évaluer le risque de mise en œuvre du DDMRP grâce à un jumeau numérique intelligent
Identifier les tendances et les modèles de données futurs grâce à la simulation DDMRP
Détecter et traiter les contraintes de processus avant la mise en œuvre du DDMRP
Créer des ordres de réapprovisionnement opérationnels sur la base d’une simulation de jumeau numérique

Questions fréquemment posées sur le DDMRP et la simulation de jumeaux numériques

En savoir plus sur le DDMRP

Demand Driven Institute (DDI)

Ptak et Smith ont ensuite fondé le Demand Driven Institute (DDI) en tant qu’organe directeur pour faire progresser et proliférer les stratégies et pratiques axées sur la demande dans la communauté industrielle mondiale en proposant des formations, des logiciels et des certifications professionnelles.

Visit Demand Driven Institute Website

Le livre DDMRP

Le concept de planification des besoins matériels en fonction de la demande a été introduit par Carol Ptak et Chad Smith dans leur premier livre : « Demand Driven Material Requirements Planning (DDMRP) ». Visitez le site web de DDI pour consulter leur bibliothèque de publications sur la gestion de la demande.

View Library of Demand Driven Publications

Logiciel conforme à la DDI

Simio a été certifié par le Demand Driven Institute (DDI) pour les trois niveaux de conformité du logiciel à utiliser pour le Demand Driven Material Requirements Planning (DDMRP), le Demand Driven Operating Model (DDOM) et le Demand Driven Sales & Operations Planning (DDS&OP).

Learn More About DDMRP Compliance