
[1]

Intelligent Objects: The Future of Simulation

C. Dennis Pegden

Simio LLC

504 Beaver St.

Sewickley, PA 15143, U.S.A.

ABSTRACT

This paper describes a new modeling system – Simio
TM

-

that is designed to simplify model building by promoting

a modeling paradigm shift from the process orientation to

an object orientation. Simio is a simulation modeling

framework based on intelligent objects. The intelligent

objects are built by modelers and then may be reused in

multiple modeling projects. Although the Simio frame-

work is focused on object-based modeling, it also sup-

ports a seamless use of multiple modeling paradigms in-

cluding event, process, object, and agent-based modeling.

1 MODELING PARADIGMS

In the early days of discrete event simulation the domi-

nant modeling paradigm was the event orientation imple-

mented by tools such as Simscript (Markowitz, et .al

1962.) and GASP (Pritsker, 1967). In this modeling para-

digm the system is viewed as a series of instantaneous

events that change the state of the system. The modeler

defines the events in the system and models the state

changes that take place when those events occur. This

approach to modeling is very flexible and efficient, but is

also a relatively abstract representation of the system. As

a result many people found modeling using an event

orientation to be difficult.

 In the 80’s the process orientation displaced the event

orientation as the dominant approach to discrete event si-

mulation. In the process view we describe the movement

of passive entities through the system as a process flow.

The process flow is described by a series of process steps

(e.g. Seize, Delay, Release) that model the state changes

that take place in the system. This approach dates back to

the 1960’s with the introduction of GPSS (Gordon, 1960)

and provided a more natural way to describe the system.

However because of many practical issues with the origi-

nal GPSS (e.g. an integer clock and slow execution) it did

not become the dominant approach until improved ver-

sions of GPSS (Henriksen, 76) along with newer process

languages such as SLAM(Pegden/Pritsker, 79) and

SIMAN (Pegden, 82) became widely used in the 80’s.

 During the 80’s and 90’s graphical modeling and

animation also emerged as key features in simulation

modeling tools. Graphical model building simplified the

process of building process models, and graphical anima-

tion dramatically improved the viewing and validation of

simulation results. The introduction of Microsoft Win-

dows made it possible to build improved graphical user

interfaces and a number of new graphically based tools

emerged (e.g. ProModel and Witness).

 Another conceptual advance that occurred during this

time was the introduction of hierarchical process model-

ing tools that supported the notion of domain specific

process libraries. The basic concept here is to allow users

to create new process steps by combining existing process

steps. The widely used Arena modeling system (Peg-

den/Davis, 1992) is a good example of this capability.

 Since the wide spread shift to a graphics-based

process orientation there have been refinements and im-

provements in the tools, but no real advances in the un-

derlying framework. The vast majority of discrete event

models continue to be built using the same process orien-

tation that has been widely used for the past 25 years.

 Although a process orientation has proven to be very

effective in practice, an object orientation provides an at-

tractive alternative modeling paradigm that has the poten-

tial to be more natural and easier to use. In an object

orientation we model the system by describing the objects

that make up the system. For example we model a factory

by describing the workers, machines, conveyors, robots,

and other objects that make up the system. The system

behavior emerges from the interaction of these objects.

 Although a number of products have been introduced

to support an object orientation, to date many practition-

ers who have elected to stick with the process orientation.

A big reason for this is that while the underlying model-

ing paradigm might be simpler and less abstract, the spe-

cific implementation may be difficult to learn and use

(e.g. require programming), or slow in execution. This is

no different than the challenges faced by the process

orientation in unseating the event orientation. Although

the first process modeling tool (GPSS) was introduced in

1961, it took 25 years before the process orientation was

developed to the point that practitioners were persuaded

to make the paradigm shift.

 This paper describes Simio – a new simulation mod-

eling tool that is designed to make the object orientation

easy to use and efficient to execute. Although Simio in-

corporates a number of innovative features in pursuit of

this goal, only time will tell if this tool has bridged the

many practical issues that must be addressed to trigger a

[2]

widespread paradigm shift in the way practitioners build

models.

 The tool is designed from the ground up to support

the object modeling paradigm; however it also supports

the seamless use of multiple modeling paradigms includ-

ing a process orientation and event orientation. It also

fully supports both discrete and continuous systems, along

with large scale applications based on agent-based model-

ing. These modeling paradigms can be freely mixed with-

in a single model.

2 THE SIMIO OBJECT PARADIGM

Simio is a simulation modeling framework based on intel-

ligent objects. The intelligent objects are built by mod-

elers and then may be reused in multiple modeling

projects. Objects can be stored in libraries and easily

shared. A beginning modeler may prefer to use pre-built

objects from libraries, however the system is designed to

make it easy for even beginning modelers to build their

own intelligent objects for use in building hierarchical

models.

 An object might be a machine, robot, airplane, cus-

tomer, doctor, tank, bus, ship, or any other thing that you

might encounter in your system. A model is built by

combining objects that represent the physical components

of the system. A Simio model looks like the real system.

The model logic and animation is built as a single step.

 An object may be animated in 3D to reflect the

changing state of the object. For example a forklift truck

raises and lowers its lift, a robot opens and closes its grip-

per, and a battle tank turns its turret. The animated model

provides a moving picture of the system in operation.

 Objects are built using the concepts of object-

orientation. However unlike other object oriented simula-

tion systems, the process of building an object is very

simple and completely graphical. There is no need to

write programming code to create new objects.

 The activity of building an object in Simio is identic-

al to the activity of building a model – in fact there is no

difference between an object and a model. This concept is

referred to as the equivalence principle and is central to

the design of Simio. Whenever you build a model it is by

definition an object that can be instantiated into another

model. For example, if you combine two machines and a

robot into a model of a work cell, the work cell model is

itself an object that can then be instantiated any number of

times into other models. The work cell is an object just

like the machines and robot are objects. In Simio there is

no way to separate the idea of building a model from the

concept of building an object. Every model that is built in

Simio is automatically a building block that can be used

in building higher level models.

3 THE OBJECT ORIENTED FOUNDATION

Many popular programming languages such as C++, C#,

and Java are all built around the basic principles of object

oriented programming (OOP). In this programming para-

digm software is constructed as a collection of cooperat-

ing objects that are instantiated from classes. These

classes are designed using the core principles of abstrac-

tion, encapsulation, polymorphism, inheritance, and com-

position.

 The abstraction principle can be summarized as fo-

cusing on the essential. The basic principle is to make the

classes structure as simple as possible.

 The encapsulation principle specifies that only the

object can change its state. Encapsulation seals the im-

plementation of the object class from the outside world.

 Polymorphism provides a consistent method for mes-

sages to trigger object actions. Each object class decides

how to respond to a specific message.

 Inheritance is a key concept that allows new object

classes to be derived from existing object classes: this is

sometimes referred to as the “is-a” relationship. This is

also referred to as sub-classing since we are creating a

more specialized class of an object. Sub-classing typical-

ly allows the object behavior to be extended with new

logic, and also modified by overriding some of the exist-

ing logic.

 Composition allows new object classes to be built by

combining existing object classes: this is sometimes re-

ferred to as the “has-a” relationship. Objects become

building blocks for creating higher level objects.

 It is interesting to note that the roots of these ideas

date back to the early 1960’s with the Simula 67 simula-

tion modeling tool. This modeling tool was created by

Kristen Nygaard and Ole-Johan Dahl (1962) of the Nor-

wegian Computing Center in Oslo to model the behavior

of ships. They introduced the basic concepts of creating

classes of objects that own their data and behavior, and

could be instantiated into other objects. This was the

birth of hierarchical modeling and object-oriented pro-

gramming.

 Many people assume that object-oriented program-

ming concepts were developed within the programming

world; however this was not the case. These principles

were developed for building simulation models, and then

adopted by the programming world.

 Although the simulation world created the original

object-oriented concepts, it has yet to produce an object-

oriented modeling framework that practitioners have

widely embraced. Although there have been a number of

attempts to provide such a framework, in the end practi-

tioners have for the most part stuck to their proven

process orientation for modeling. One of the big reasons

for this is that most past attempts have simply been ob-

ject-oriented programming libraries that require the user

[3]

to step back in time 25 years and again code their models

and/or objects in a programming language.

4 THE SIMIO OBJECT FRAMEWORK

The Simio object framework is built on the same basic

principles as object oriented programming languages;

however these principles are applied within a modeling

framework and not a programming framework. For ex-

ample the Microsoft development team that designed C#

applied these basic principles in the design of that pro-

gramming language. Although these same principles

drive the design of Simio, the result is not a programming

language, but rather a graphical modeling system. This

distinction is important in understanding the design of

Simio.

 Simio is not simply a simulation modeling tool that is

programmed in an OOP language (although it is pro-

grammed in C#). Likewise it is not simple a set of classes

available in an OOP language such as Java or C++ that

are useful for building simulation models. Simio is a

graphical modeling framework to support the construction

of simulation models that is designed around the basic ob-

ject oriented principles. For example when you create an

object such as a “machine” in Simio, the principle of in-

heritance allows you to create a new class of machines

that inherits the base behavior of a “machine”, but this

behavior can be modified (overridden) and extended.

Whereas in a programming language we extend or over-

ride behavior by writing methods in a programming lan-

guage, in Simio we extend or override behavior by adding

and overriding graphically defined process models.

 This distinction between object oriented modeling

and object oriented programming is crucial. With Simio

the skills required to define and add new objects to the

system are modeling skills, not programming skills.

5 THE ANATOMY OF AN OBJECT (MODEL)

When you create a model in Simio, you are creating an

object class from which multiple instances can be created.

This process is referred to as instantiation.

 When you instantiate an object into a model, you

may specify properties of the object that govern the beha-

vior of this specific instance of this object. For example

the properties for a machine might include the setup,

processing, and teardown time, along with a bill or mate-

rials and a operator required during the setup. The creator

of the object decides on the number and the meaning of

the properties. The properties in Simio are strongly typed

and can represent numeric values, Booleans, strings, ob-

ject references, dates and times, etc. Since any model that

you build is by definition an object, you have the oppor-

tunity to parameterize your model through properties as

well.

 It should be noted that instantiating a model is not the

same as copying or cloning the model. When a model is

used as a building block in the construction of other mod-

els it may be instantiated many times in many different

models. The model instance simply holds a reference to

the one model definition that is used over and over again.

The instance also holds the property values since these are

unique to each instance. However the model logic is

shared by all instances. Regardless of how many in-

stances are created, there is only one class definition of

the object, and each instance refers back to this single de-

finition. Each instance holds the properties that are

unique to that instance, but looks back to the definition to

get its underlying behavior. If the behavior in the defini-

tion is changed then all instances automatically make use

of this new behavior.

 In addition to properties, objects also have states.

States are also strongly typed but always map to a numer-

ic value. For example the Booleans true and false map to

1 and 0, and an enumerated list of state names map to the

list index position (0, 1, …., N) in the list. A state

changes as a result of the execution of the logic inside the

object. Properties can be thought of as inputs to an ob-

ject, and states can be thought of as output responses that

change throughout the execution of the object logic. A

state might represent a count of completed parts, the sta-

tus of a machine selected from an enumerated state list,

the temperature of an ingot heating in a furnace, the level

of oil in a ship being filled, or the accumulation level on a

conveyor belt.

 There are two basic types of states: discrete and con-

tinuous. A discrete state is a value that only changes at

event times (customer arrival, machine breakdown, etc.)

A continuous state (e.g. tank level, position of a cart, etc.)

has a value that changes continuously over time.

6 THREE OBJECT TIERS

One of the important and unique internal design features

of Simio is the use of a three tier object structure that se-

parates an object into an object definition, object instance,

and object realization. The object definition specifies the

object behavior and it is shared by all instances of the ob-

ject. An object instance is simply an instance of that ob-

ject within a parent object definition (e.g. a lathe machine

instance is placed inside a work cell definition). The ob-

ject instance defines the property values for each individ-

ual instance of the object and this instance data is in turn

shared by all object realizations.

 The object realization is used to represent a specific

realization of an instance within an expanded model hie-

rarchy. For example, each time a new work cell instance

is placed in a parent object definition (e.g. a production

line) it creates the need for a new realization for the em-

bedded lathe. Although the work cell definition is built

[4]

from a single lathe instance, this single lathe instance

cannot hold the state values corresponding to multiple

lathe realizations that result from multiple instances of the

work cell. The object realizations provide the mechanism

for holding this hierarchical state information in a very

compact form. The object realizations are only created

during model execution and hold only the model state va-

riables and a reference to their parent object instance.

This is a highly efficient structure that is crucial for large

scale applications such as agent-based models that can

have many thousands of object realizations.

7 THREE WAYS TO BUILD OBJECT

DEFINITIONS

The previous example in which we defined a new object

definition (work cell) by combining other objects (ma-

chines and a robot) is one example of how we can create

object definitions in Simio. This type of object is called a

composed object because we create this object by combin-

ing two or more component objects. This object building

approach is fully hierarchical, i.e. a composed object can

be used as a component object in building higher level ob-

jects. This is only one way of building objects in Simio -

there are two other important methods.

 The most basic method for creating objects in Simio

is by defining the logical processes that alter their state in

response to events. For example, a machine object might

be built by defining the processes that alter the machine

state as events occur such as part arrival, tool breakdown,

etc. This type of modeling is similar to the process mod-

eling done in traditional modeling systems in use today

such as Arena or GPSS. An object that is defined by de-

scribing its native processes is called a base object. A

base object can in turn be used as a component object for

building higher level objects.

 The final method for building objects in Simio is

based on the concept of inheritance. In this case we

create an object from an existing object by overriding (i.e.

replacing) one or more processes within the object, or

adding additional processes to extend its behavior. In

other words we start with an object that is almost what we

want, and then we modify and extend it as necessary to

make it serve our own purpose. For example we might

build a specialized drill object from a generalized ma-

chine object by adding additional processes to handle the

failure and replacement of the drill bit. An object that is

built in this way is referred to as a derived object because

it is sub-classed from an existing object.

 Regardless which method is used to create an object,

once created it is used in exactly the same way. An object

can be instantiated any number of times into a model.

You simply select the object of interest and place it (in-

stantiate it) into your model

8 OBJECT CLASS

There are six basic classes of objects in Simio. These six

classes of objects provide a starting point for creating in-

telligent objects within Simio. By default, all six of these

classes of objects have very little native intelligence, but

all have the ability to gain intelligence. You build intelli-

gent versions of these objects by modeling their behavior

as a collection of event driven processes.

 The first class is the fixed object. This object has a

fixed location in the model and is used to represent the

things in your system that do not move from one location

to another. Fixed objects are used to represent stationary

equipment such as machines, fueling stations, etc.

 Agents are objects that can freely move through 3-

dimensional space. Agents are also typically used for de-

veloping agent-based models. This modeling view is use-

ful for studying systems that are composed of many inde-

pendently acting intelligent objects that interact with each

other and in so doing create the overall system behavior.

Examples of applications include market acceptance of a

new product or service, or population growth of compet-

ing species within an environment.

 An entity is sub-classed from the Agent class and has

one important added behavior. Entities can move through

the system from object to object over a network of links

and nodes. Examples of entities include customers in a

service system, work pieces in a manufacturing system,

ships in a transportation system, tanks in a combat sys-

tem, and doctors, nurses, and patients in a health delivery

system.

 Note that in traditional modeling systems such as

GPSS or Arena the entities are passive and are acted upon

by the model processes. However in Simio the entities

can have intelligence and control their own behavior.

 Link and node objects are used to build networks

over which entities may flow. A link defines a pathway

for entity movement between objects. A node defines a

starting or ending point for a link. Links and nodes can

be combined together into complex networks. Although

the base link has little intelligence we can add behavior to

allow it to model unconstrained flow, congested traffic

flow, or complex material handling systems such as ac-

cumulating conveyors or power and free systems.

 The final class of object is a transporter and is sub-

classed from the entity class. A transporter is an entity

that has the added capability to pickup, carry, and drop off

one or more other entities. By default transporters have

none of this behavior, but by adding model logic to this

class we can create a wide range of transporter behaviors.

A transporter can model a taxi cab, bus, AGV, subway

car, forklift truck, or any other object that has the ability

to carry other entities from one location to another.

 A key feature of Simio is the ability to create a wide

range of object behaviors from these six basic classes.

[5]

The Simio modeling framework is application domain

neutral – i.e. these six basic classes are not specific to

manufacturing, service systems, healthcare, military, etc..

However it is easy to build application focused libraries

comprised of intelligent objects from these six classes de-

signed for specific application.. For example it is rela-

tively simple to build an object (in this case a link) that

represents a complex accumulating conveyor for use in

manufacturing applications. The design philosophy of

Simio directs that this type of domain specific logic be-

longs in the objects that are built by users, and not pro-

grammed into the core system.

9 CREATING INTELLIGENT OBJECTS WITH

PROCESSES

Modeling in Simio begins with base objects – it is the

foundation on which higher level objects are built. A

base object in Simio is a fixed object, agent, entity, link,

node, or transporter that has intelligence added by one or

more processes. Processes give an object its intelligence

by defining the logic that is executed in response to

events.

 Each process is a sequence of process steps that is

triggered by an event and is executed by a token. A

process always begins with a single Begin step, and ends

with a single End step. A token is released by the Begin

step and is simply a thread of execution (similar to entities

in Arena). A token may have properties (input parame-

ters) and states (runtime changeable values) that control

the execution of the process steps. You can define your

own classes of tokens that have different combinations of

properties and states.

 The modeling power of Simio comes from the set of

events that are automatically triggered for the six basic

classes of objects, along with the process steps that are

available to model state changes that occur in response to

these events. Fully mastering the art of building intelli-

gent objects involves learning the events and the collec-

tion of available process steps, along with the knowledge

and experience of how to combine these steps to represent

complex logic.

 Each step in Simio models a simple process such as

holding the token for a time delay, seizing/releasing of a

resource, waiting for an event to occur, assigning a new

value to a state, or deciding between alternate flow paths.

Some steps (e.g. Delay) are general purpose steps that are

useful in modeling objects, links, entities, transporters,

agents, and groups. Other steps are only useful for specif-

ic objects. For example, the Pickup and Dropoff steps are

only useful for adding intelligence to transporters and the

Engage and Disengage steps are only useful in adding in-

telligence to Links.

 Each object class has its own set of events. For ex-

ample, a link provides events that fire when entities enter

and leave the link, merge fully onto the link, collide with

or separate from other entities that reside on the link,

move within a specified range of another entity, etc. By

providing model logic to respond to these events we can

completely control the movement of entities across the

link. For example, to add accumulation logic to the link

we simply write a small process that its triggered when an

entity collides with the entity it is following, and reassigns

the speed of the entity to match the speed of the entity that

it is following.

 The process steps that are used to define the underly-

ing logic for an object are stateless – i.e. they have prop-

erties (input parameters) but no states (output responses).

This is important because this means that a single copy of

the process can be held by the object class definition, and

shared by an arbitrary number of object instances. If the

process logic is changed, this fact is automatically reflect-

ed by all instances of the object.

 The states for an object instance are held in elements.

Elements define the dynamic components of an object and

may have both properties (input parameters) and states

(runtime changeable values). Within an object the tokens

may execute steps that change the states of the elements

that are owned by the object.

 An example of an element is the station that defines a

location within an object. Stations are also used to define

entry and exit points into and out of an object. Entities

can transfer into and out of stations (using the Transfer

step), and a station maintains a queue of entities currently

in the station as well as entities waiting to transfer into the

station. A station has a capacity that limits transfers into a

station. Hence an entity arriving to an object over a link

can only exit the link and enter the object if the entry sta-

tion for the object has capacity available.

10 FINITE CAPACITY SCHEDULING

Although simulation has traditionally been applied to the

design problem, it can also be used on an operational ba-

sis to generate production schedules for the factory floor.

When used in this mode, simulation is a Finite Capacity

Scheduler (FCS) and provides an alternative to other FCS

methods such as optimization algorithms and job-at-a-

time sequencers. However simulation based FCS has a

number of important advantages (e.g. speed of execution

and flexible scheduling logic) that make it a powerful so-

lution for scheduling applications

 Simulation provides a simple yet flexible method for

generating a finite capacity schedule for the factory floor.

The basic approach with simulation-based scheduling is

to run the factory model using the starting state of the fac-

tory and the set of planned orders to be produced. Deci-

sion rules are incorporated into the model to make job se-

lection, resource selection, and routing decisions. The

simulation constructs a schedule by simulating the flow of

[6]

work through the facility and making “smart” decisions

based on the scheduling rules specified. The simulation

results are typically displayed as jobs loaded on interac-

tive Gantt chart that can be further manipulated by the us-

er. There are a large number of rules that can be applied

within a simulation model to generate different types of

schedules focused on measures such as maximizing

throughput, maintaining high utilization on a bottleneck,

minimizing changeovers, or meeting specified due dates.

 Because of the special requirements imposed by

scheduling applications (e.g. the need for specialized de-

cision rules and the need to view the results in the form of

an interactive Gantt chart), simulation-based scheduling

applications have typically employed specialized simula-

tors specifically designed for this application area. The

problem with this approach is that the specialized simula-

tors have built-in, data-driven factory models that cannot

be altered or changed to fit the application. In many cases

this built-in model is an overly simplified view of the

complexities of the production floor. .This one model fits

all approach severely limits the range of applications for

these tools. Some production processes can be adequately

represented by this fixed model, but many others cannot.

 Simio takes a different approach by allowing the fac-

tory model to be defined using the full general-purpose

modeling power of the tool. Hence the range of applica-

tions is no longer restricted by a fixed built-in model that

cannot be altered or changed between applications. The

complexities of the production process can be fully cap-

tured by the user-built Simio model. This not only in-

cludes the logic within each work center, but also the ma-

terial handling required to move jobs between work

centers.

 The specialized requirements for FCS applications

are addressed by incorporating features into Simio to spe-

cifically support the needs of FCS. These features include

the support for externally defined job data sets along with

very flexible modeling of resources and materials. Al-

though these features are specifically designed to unleash

the full modeling power of Simio for FCS applications,

they are also useful in general modeling applications.

 A Simio job data set allows a list of jobs to be exter-

nally defined for processing by the simulation model.

The jobs are defined in a data set containing one or more

tables, with relations defined between table columns. The

specific schema for holding the job data is arbitrary and

can be user defined to match the data schema for the

manufacturing data (e.g. an ERP system). The job data

typically includes release and due date, job routings, setup

and processing times, material requirements, as well as

other properties that are relevant to the system of interest..

The objects in Simio can directly reference values speci-

fied in the job data set (e.g. processing time) without

knowing the schema that was implemented to store the

data.

 Any object in Simio can serve as a capacitated re-

source and can have its own independent behavior. Re-

sources can be selected from a list based on flexible rules

such as minimum changeover time or longest idle time. .

Resources also support very flexible rules (earliest due

date, least remaining slack, critical ratio, etc) for selecting

between competing jobs that are waiting to seize the re-

source. Finally the job usage history for resources can be

displayed on an interactive Gantt chart.

 The Materials element in Simio provides direct sup-

port to model things that can be consumed and produced

during the execution of the model. Materials can also be

defined hierarchically to model a traditional Bill of Mate-

rials (BOM) for manufacturing applications. Hence a

manufacturing step can be modeled as the consumption of

a specific list of materials within the hierarchical BOM.

11 SUMMARY

Simio is a new modeling framework based on the core

principles of object oriented modeling. It is unique in the

following ways:

1. The Simio framework is a graphical object-

oriented modeling framework as opposed to

simply a set of classes in an object-oriented pro-

gramming language that are useful for simulation

modeling. The graphical modeling framework of

Simio fully supports the core principles of object

oriented modeling without requiring program-

ming skills to add new objects to the system.

2. The Simio framework is domain neutral, and al-

lows objects to be built that support many differ-

ent application areas. The process modeling fea-

tures in Simio make it possible to create new

objects with complex behavior.

3. The Simio framework supports multiple model-

ing paradigms. The framework supports the

modeling of both discrete and continuous sys-

tems, and supports an event, process, object, and

agent modeling view.

4. The Simio framework provides specialized fea-

tures to directly support applications in emula-

tion and finite capacity scheduling that fully le-

verage the general modeling capabilities of

Simio.

REFERENCES

Gordon, Geoffrey, 1960 October 25. A general purpose

systems simulator. (Unpublished manual.) White

Plains, N.Y.: IBM. Corp. ASDD Commercial Dept.

Henriksen, J. O. 1976. Building a better GPSS: a 3:1 en-

hancement. In Proceedings of the 1975 Winter Simu-

[7]

lation Conference, 465-469. New Jersey: AFIPS

Press

Markowitz, H., Hausner, B., and Karr, H. SIMSCRIPT: A

simulation programming language, Prentice Hall,

Englewood Cliffs, N. J. 1962

Nygaard, K and O-J Dahl, . SIMULA -- An Extension of

ALGOL to the Description of Discrete-Event Net-

works, presented at the Second International Confe-

rence on Information Processing (1962)

Pegden, C. D. and A. A. B. Pritsker (1979). SLAM: Si-

mulation Language for Alternatives Modeling. Simu-

lation, Vol. 33, No. 5.

Pegden, C. D. (1982). Introduction to SIMAN. Systems

Modeling Corporation.

Pegden, C. D. and D. A. Davis (1992)

Arena: a SIMAN/Cinema-based Hierarchical Model-

ing System; In Proceedings of the 1975 Winter Simu-

lation Conference 390-399

Pritsker, A. A. B. 1967. GASP H User's Manual. Arizona

State University.

AUTHOR BIOGRAPHIES

C. Dennis Pegden is the founder and CEO of Simio

LLC. He was the founder and CEO of Systems Modeling

Corporation, now part of Rockwell Software, Inc. He has

held faculty positions at the University of Alabama in

Huntsville and The Pennsylvania State University. He led

in the development of the SLAM, SIMAN, Arena, and

Simio simulation tools. He is the author/co-author of

three textbooks in simulation and has published papers in

a number of fields including mathematical programming,

queuing, computer arithmetic, scheduling, and simulation.

His email is cdpegden@simio.biz. Additional com-

pany information can be found at www.simio.biz.

