Integrating Simulation and Digital Twin Technology in the Hospitality Industry

The numbers are in and they do look good for the hospitality industry which consists of hotels, restaurants, and other hospitality-related services. According to Forbes, profitability in the hospitality industry is finally on the increase after the slump of previous years. The report further stated that the net profit margins for full-service restaurants grew by approximately 6% which is 3.8% more than the previous year. The National Restaurant Association expects this growth to continue but early wins must also be consolidated if this is to be achieved. And this is where Digital Twin Technology comes into play.

With the expected growth figures also comes challenges and in the hospitality industry, these challenges generally include fending off the competition and enhancing operations to reap increased rewards. In terms of competition in the hospitality industry, the following statistics paint a clearer picture. In 2018, approximately 60,000 new restaurants and lounges were opened in the United States while 50,000 either filed in for chapter 11 or were closed down for other reasons. Although at the end of the year, the industry grew with the addition of 10,000 restaurants, this mass closure still highlights the competitive nature of the industry.

The competitiveness in the hospitality industry is turning many small and large scale stakeholders to turn to emerging technologies to ease operational deficiencies. This is why today, the hospitality industry has become one of the major drivers of innovation in robotics, artificial intelligence, digital visualization, and the internet of things (IoT). The aim is to collect data from every aspect of a hotel or restaurants operational chain and use that data to receive the business insights needed to stay ahead of the competition.

Today, most hotels make use of interconnected devices to simply customer requests and analyze their peculiarities in order to deliver bespoke services. Examples of this include the use of concierge robots by the Hilton group and the design of smart hotels by Marriot and other stakeholders.

And to what benefits?

Integrating digital technology in the hospitality industry has led to a 40% increase in revenue for online travel agencies (OTAs) who streamline and personalize their services for customers. In brick and mortar hospitality facilities like the Marriot hotels, its financial report of 2018, highlighted a 38 percent increase in revenue with emerging technologies playing a starring role in simplifying operations. This led Arne Sorenson, CEO of Marriot, to state that ‘digital transformation is not only speeding up every aspect of our business, but it is also broadening operations’. And this transformation, as well as, the benefits they bring can be broadened much further with the integration of Digital Twin technology.

What is A Digital Twin?

A digital twin refers to virtual representations of physical products, systems, facilities and the processes that occur in them. The technology can be used to create digital replicas of actual physical assets and processes and also integrate potential assets onto the created virtual environment. This means every asset that functions in a shop floor including devices or equipment and all business operation or process can be recreated in a digital environment.

Digital twin environments also create an enabling environment for testing new business policies, operations, and assets to access their performance levels before any physical implementation is undertaken. When put beside the recent adoption of smart technology in the hospitality industry, it is easy to see why digital twin technology is the solution every stakeholder has been waiting for to broaden business operations.

One of the major features of the digital twin is its ability to virtualize every asset and process that occurs in an environment. In the hospitality industry, these assets may include; the smart devices used in rooms, check-in and check-out points, robots, the equipment used for logistics and supply chain management, inventories, and every process that produces data. This means when correctly deployed, a digital twin can recreate assets and processes from the deepest parts of a hospitality system in a digital ecosystem.

The Digital Twin and Enhancing the Hospitality Industry

The easiest way to understand how digital twin technologies can be leveraged to gain an edge over the stiff competition in the hospitality industry is through case studies and CKE Restaurants Holdings, Inc. provides an example.

CKE Restaurants Holdings, Inc. digital twin Story is one that showcases how harnessing digital twin technology and virtual reality can be used to test and implement new operational policies within the hospitality industry. In its case, CKE recreated hundreds of assets and kitchen configurations using the digital twin with the aim of deciding the best configuration that will increase productivity in its Carl’s Jr and Hardee’s restaurants. With the aid of Simio’s digital twin solutions, restaurant floors and kitchens were digitized which provided the perfect environment for reorganizing shop floor assets to reduce employee traffic and create an enabling environment for customers.

To achieve the level of detail needed to accomplish this task, CKE had mapped out every production aspect that occurs within a restaurant down to the plate cleaning process. With this data, accurate simulations could be executed which yielded highly-accurate results. Thus, integrating new equipment and testing how they function with other variables and assets within the restaurant was made possible. This meant receiving accurate business insight into new policies and the effects of introducing new assets before effecting a physical implementation.

According to Forbes, the integration of Simio’s digital twin helped CKE Restaurants, Holding, Inc. manage hundreds of simulations that consisted of the introduction of diverse assets and processes into the digital model. This allowed the restaurant to predict the effects of introducing approximately ten new equipment to the shop floor, as well as, test the efficiency levels of five layouts for the kitchen. The use of a digital twin also helped analyze new designs that would assist CKE with easing the workload on employees which would lead to higher employee retention in an industry notorious for low retention rates.

The example of CKE Holdings, Inc. still leaves the question of if the digital twin can enhance operations in larger more complex facilities. The short answer to this is, definitely yes!

Digital twin technologies have been made use of in large industrial settings such as Nestlé’s and Boeing facilities to implement new ideas and enhance production. Although these examples highlight the importance of digital twin technology, the focus is on the hospitality industry which leads to the longer answer.

In the large hotels with 300 rooms and above, more operational processes occur that dwarf the example highlighted in the CKE case study. These processes include; logistics and supply chain management, tracking the orchestration of hundreds of customers, power consumption, and correctly assigning workplace assets to meet demand. Other smaller systems within a large hotel’s immediate environment are the valet and parking system, concierge system, and manual workflows.

As stated earlier, digital twin solutions are capable of recreating diverse assets, processes and system in a virtual environment when correctly applied. This actually makes the digital twin a solution custom-built for large hotels where the need to keep track of multiple processes within a system while implementing new ideas is a regular occurrence. With the aid of the digital twin, every data produced in large facilities can be collected and analyzed against the different assets within the system. This gives the system integrator or manager a contextual insight into every aspect of running a hotel facility in real-time.

Furthermore, the digital twin of large hotel facilities can be used to run both discrete and continuous event simulations to better understand the events occurring in different systems. A discrete event simulation can be used to test how the implementation of building of an additional check-out point at the parking lot will ease driving and foot traffic before a physical implementation is considered. Also, a simulation of the power consumption that occurs within the facilities can provide insight into which assets or processes can be periodically shutdown to reduce consumption.

The benefits of Adopting Digital Twin in the Hospitality Industry

 Although the earlier case studies provide an insight into the benefits of the digital twin to the hospitality industry, more information is sometimes needed when making decisions. In this case, the decision to be made is choosing to enhance operations using digital twin solutions.

One of the important benefits of integrating a digital twin is the clarity of purpose it provides to facility managers and hotel owners. The use of a digital twin means decisions no longer has to be made in the dark. An accurate digital twin built with every asset, process, and data coming from a hotel or restaurant is the perfect environment for testing out anything before implementation. The test can be as extensive as analyzing the effects of a new equipment transportation system or how automating a business process will turn out. The test can also be as little as analyzing how changes in shelf heights will increase employee productivity.

Another important challenge hospitality businesses face involves the reduction of operational expenses without having to reduce the quality of services offered. Here again, the insight a digital twin provides can be helpful with reducing waste. An example of this is the use of the digital twin by KONE, an elevator company. KONE makes use of digital twin technology to understand how people move through buildings and the decisions they take when riding an elevator. The knowledge gotten from the use of a digital twin helped the company cut out three to four minutes from the average elevator commute. This, in turn, reduced maintenance cost and increased productivity for building owners.

KONE’s case study highlights the fact that hotel owners can make use of the digital twin and scheduling software to analyze commutes, reception traffic, kitchen and dry cleaning process with the aim of increasing workforce productivity. The model can also be used to enhance customer experience by reducing commute from the reception floor to hotel rooms. As for restaurants, this can be taken further to simplify the drive-through process and increase worker efficiency thereby eliminating waste.

The journey to a smarter hospitality industry also provides the perfect environment for enhancing productivity and providing seamless experiences for customers. Embedded devices and IoT solutions can be used to map out customer attractions and the areas that witness more customer traffic. With this information, simulations run through the digital twin can create optimized schedules for visitation periods. This will ensure that customers do not wait in long queues before being able to access areas of attraction within a facility.

Carving a Niche in the Competitive Hospitality Industry

 Staying afloat in the hospitality industry in order to reap a part of its staggering $550billion revenue requires some effort. These efforts consist of creating an efficient system that takes care of every need of the customer. With advancements in technology, the task of creating that system has become more streamlined and visible to business owners. The digital twin offers visibility and the ability to access real-time information before designing or recreating efficient systems.

CKE Restaurant Holdings, Inc.’s use of Simio’s digital twin solutions provides an excellent case study that highlights how important digital twin is to the transformation of the hospitality industry. With these solutions business owners can better access both small and large scale operational process and enhance these process to the benefit of your customers. You can learn more about the competitive edge the digital twin offers your hospitality and restaurant facilities by speaking to a Simio representative today.

Resources:

https://www.google.com/url?sa=t&source=web&rct=j&url=https://marriott.gcs-web.com/static-files/b82978a6-9d28-4e38-9855-fc4ae2cebe11&ved=2ahUKEwjH8YGxjKPlAhWNTsAKHesCC3EQFjAOegQIBxAB&usg=AOvVaw1wOGkSQxcJ8O7VZBmYm1xF

https://www.nextguestdigital.com/blog/hospitality-digital-tech/

https://www.simio.com/applications/industry-40/Digital-Twin.php

https://www-forbes-com.cdn.ampproject.org/c/s/www.forbes.com/sites/lanabandoim/2019/09/25/how-cke-restaurants-is-using-virtual-reality-to-innovate/amp/

https://www.google.com/url?sa=t&source=web&rct=j&url=https://inbuildingtech.com/uncategorized/digital-twins-proptech/&ved=2ahUKEwi6ieSMjaPlAhWMXsAKHYvxC94QFjACegQIAhAB&usg=AOvVaw2JkDmpLHU5Vs0BI4inPD4n

Digital Twin Technology: 5 Challenges Businesses Face By Overlooking It

A Disruptive technology is a product, concept or service that has the ability to redefine the traditional way of doing things.  Today, the digital twin concept is being hailed as a disruptive technology with the capacity to change how we design, solve complex problems and collaborate. In fact, a Gartner Report predicted that by 2021 approximately 50% of industrial companies will integrate the use of digital twin technologies to increase workforce performance and manufacturing efficiency. So, what is this disruptive technological concept?

The Digital Twin refers to a real-time replica of a physical entity. This entity could be a living thing, an inanimate physical object, as well as, assets, processes and systems that function in the physical world or environment. Although this concept is actually three decades old, the convergence of emerging technologies such as the internet of things (IoT), artificial intelligence (AI), machine learning has taken it to new heights. Digital twins juxtapose these emerging technologies to create digital models of physical entities with the ability to simulate real-time changes that occur to the physical model.

An example of how this concept work involve the development of the digital twin of an aircraft. With the digital twin, finite element analysis (FEA) can be applied to determine the fatigue limit of the aircraft’s structure. The results of this simulation can then be used to design or choose more suitable materials or design for a more durable aircraft. Outside manufacturing, digital twins can be employed in diverse industries including healthcare to simulate how the human body reacts to external forces. The benefits of integrating digital twins include increased design efficiency, enhancing predictive analysis, and collaboration.  This is why the market for it is expected to hit approximately $15billion by 2023. The benefits of digital twins are huge but the challenges business will face not embracing it is even bigger.

This article will discuss:

  • The challenges businesses face not integrating the digital twin in business operations.
  • The effects of not embracing the digital twin.
  • The disruptive capabilities of the digital twin.

The Five Challenges Businesses Face Not Embracing Digital Twins

With approximately 50% of industrial companies integrating the use of digital twins, the 50% who don’t will definitely be losing their competitive edge. This is because the digital twin will redefine real-time simulation applications in ways the average 3D modelling software or Building Information Modelling platform can’t aspire to. The challenges to expect include:

Keeping Legacy Solutions, Designs or Data – As the generation of baby boomers continue to retire daily, the probability of losing the knowledge that built legacy equipment and systems could be lost. This includes the Mylar copies of traditional manufacturing equipment or the designs of legacy military aircraft. Regardless of technological advancements, the loss of legacy data destroys the foundations newer prototypes were built on.

With the aid of the digital twin concept, businesses across every industry, can create an accurate digital model of legacy equipment or solutions. The digital model can then be stored for posterity sake or analyzed with the aim of developing upgraded prototypes. Models can also be used as materials for training the younger generation of workers through virtual reality environments.

 Enhancing Lean Manufacturing Processes – Toyota’s integration of lean manufacturing to speed up production while efficiently using resources has become folklore in the automotive industry. The integration of lean manufacturing models – which were disruptive at that time – helped Toyota dominate the industry for decades. This is the leverage the digital twin concept offers. The ability to optimize entire product value chains is something that can be achieved in real-time through the digital twin.

A study at the Bayreuth University, Germany focused on analyzing the impact of digital twins in collecting real-time data and optimizing production systems. The study compared the efficiency of digital twins and the commonly used value stream mapping solutions. In the end, the results showed that digital twins exceeded traditional solutions in data acquisition, automated derivation of optimization measures, and the capturing of motion data. These data which are crucial to optimizing production could also be utilized in a digital twin environment to optimize diverse processes. Thus, shunning digital twins will leave firms in the lurch while competitors who leverage this concept can optimize production variables in real-time.

Limitations in the Integration and Use of Data – The Industry 4.0 revolution currently going on relies heavily on the collection and use of data to receive important business insight and automate processes. The tools or applications currently used today are enterprise relationship management software, and industrial cloud solutions. Although these solutions do excellently well in collecting data from smart or industrial internet of things (IIoT) devices, they still struggle with collecting data from legacy or dumb equipment. This limits the penetration of Industry 4.0 in the deepest layers of manufacturing shop floors which is what the OPC Foundation intends to solve.

Digital twin concepts can help smart factories integrate dumb equipment from the deepest levels of a shop floor into models of the manufacturing plant. This makes it possible to capture the hundreds of non-measured information in the shop floor into a digital environment thereby truly meeting Industry 4.0 and OPC UA standards. If successfully done, the digital twin with the captured data can be used to predict the facilities transient response to external disturbances, equipment failure, and system malfunctions.

Manufacturers who overlook digital twin concepts will be stuck with using data from only smart equipment and IoT devices to track real-time changes on the shop floor. The limitations associated with not capturing non-measured data will lead to approximations when automating operations in a smart factory. This could lead to downtime, an inefficient workforce, and in extreme situations accidents to workers.

Limiting the Effectiveness of Predictive Analysis – Another important challenge shunning the integration of digital twins into industrial operations is the difficulties that come with making blind or half-informed changes. Making blind changes when making important decisions such as designing a new material handling system or reducing the number of processes needed to develop a product will have terrible consequences. These consequences will include wastage of resources, a subpar end product or confusion on the shop floor.

According to Gartner, downtime in the manufacturing industry could lead to huge losses. In the automotive industry alone, downtime is responsible for a loss of $22,000 per minute. Although the numbers may be less in other industries, the effects are still considerable. Digital twins can help eliminate these challenges or losses by helping businesses simulate the real-time effect of making certain changes. For example, a change of production schedule while going through a transition period would have left the aviation manufacturer Lockheed Martin unable to meet its delivery timelines. With the aid of the Simio simulation software, the manufacturer was able to make informed decisions that optimized the production process.

Next Steps

The match to industry 4.0 and a more connected factory is one that must be planned for if manufacturers intend to remain competitive for the long run. One way to achieve this is by integrating a digital twin for simulating and receiving the insights needed to automate industrial processes. If properly executed, you will be turning the disruptive nature of the digital twin to your benefit.

Resources:

https://www.gartner.com/smarterwithgartner/prepare-for-the-impact-of-digital-twins/

https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017

https://www.isw.uni-stuttgart.de/en/institute/highlights/digital-twin/

https://blogs.opentext.com/addressing-the-data-challenges-in-the-digital-twin/

https://www.gartner.com/smarterwithgartner/prepare-for-the-impact-of-digital-twins/

Simio now has the GSA Advantage!®

We are pleased to announce that Simio has been awarded the coveted U.S. General Service Administration (GSA) IT-70 contract for Government Services.

Simio’s object-oriented Simulation and Production Scheduling software is ideally suited for all aspects of state and local government use. Now, government agencies can more easily purchase Simio products and services for design, emulation and scheduling of their complex systems.

“We’re proud and excited to offer a straightforward solution for simulation needs,” says Anthony Innamorato, a former Platoon Commander of the U.S. Navy and the current Vice President of Customer Solutions at Simio LLC. “With Simio now being awarded a GSA contract, government employees can more easily access and utilize the power of Simio.”

Simio now proudly displays the GSA Starmark Logo on our website, along with our Contract Number: 47QTCA19D008W.

The GSA’s federal procurement approval process means that Simio’s product offering has been screened and accepted as the best possible simulation software, at a fair price, within our industry. This means that state and local government buyers and their agencies can order and buy with confidence. They can implement strategic purchases more easily to expedite acquisitions. It also means that they obtain best prices, at the same time ensuring Federal Acquisition Regulation (FAR) compliance.

Already major suppliers to the Government, Military and Department of Defense, Simio’s solutions encompass a broad set of issues related to production scheduling, supply chain and logistics, as well as resource staffing. Typical application areas include fleet sizing and design, refurbishment operations planning and overall process improvement using Lean concepts.

Simio simulation can assist in any scenario where modeling is needed to determine solutions or to improve communication of ideas and promote understanding. Our software can help make important decisions that are critical for the reduction of risk.

Applications for Simio’s simulation in the federal government environment include:

  • large or complex systems with a great degree of process variability,
  • critical situations where it is too expensive or risky to do live testing, and
  • systems where data is missing or incomplete.

Take advantage of our new alignment with the GSA’s purchasing program to implement Simio’s leading edge software in your organization.

Find out more today about how you can order Simio via the GSA Advantage!®

The Evolution of the Industrial Ages: Industry 1.0 to 4.0

The modern industry has seen great advances since its earliest iteration at the beginning of the industrial revolution in the 18th century. For centuries, most of the goods including weapons, tools, food, clothing and housing, were manufactured by hand or by using work animals. This changed in the end of the 18th century with the introduction of manufacturing processes. The progress from Industry 1.0 was then rapid uphill climb leading up to to the upcoming industrial era – Industry 4.0. Here we discuss the overview of this evolution.

Industry 1.0 The late 18th century introduced mechanical production facilities to the world. Water and steam powered machines were developed to help workers in the mass production of goods. The first weaving loom was introduced in 1784. With the increase in production efficiency and scale, small businesses grew from serving a limited number of customers to large organizations with owners, manager and employees serving a larger number. Industry 1.0 can also be deemed as the beginning of the industry culture which focused equally on quality, efficiency and scale.

Industry 2.0 The beginning of 20th century marked the start of the second industrial revolution – Industry 2.0. The main contributor to this revolution was the development of machines running on electrical energy. Electrical energy was already being used as a primary source of power. Electrical ma- chines were more efficient to operate and maintain, both in terms of cost and effort unlike the water and steam based machines which were comparatively inefficient and resource hungry. The first assembly line was also built during this era, further streamlining the process of mass production. Mass production of goods using assembly line became a standard practice.

This era also saw the evolution of the industry culture introduced in Industry 1.0 into management program to enhance the efficiency of manufacturing facilities. Various production management techniques such as division of labor, just-in-time manufacturing and lean manufacturing principles refined the underlying processes leading to improved quality and output. American mechanical engineer Fredrick Taylor introduced the study of approached to optimize worker, workplace techniques and optimal allocation of resources.

Industry 3.0 The next industrial revolution resulting in Industry 3.0 was brought about and spurred by the advances in the electronics industry in the last few decades of the 20th century. The invention and manufacturing of a variety electronic devices including transistor and integrated circuits auto- mated the machines substantially which resulted in reduced effort ,increased speed, greater accuracy and even complete replacement of the human agent in some cases. Programmable Logic Controller (PLC), which was first built in 1960s was one of the landmark invention that signified automation using electronics. The integration of electronics hardware into the manufacturing systems also created a requirement of software systems to enable these electronic devices, consequentially fueling the software development market as well. Apart from controlling the hardware, the software systems also enabled many management processes such as enterprise resource planning, inventory management, shipping logistics, product flow scheduling and tracking throughout the factory. The entire industry was further automated using electronics and IT. The automation processes and software systems have continuously evolved with the advances in the electronics and IT industry since then. The pressure to further reduce costs forced many manufacturers to move to low-cost countries. The dispersion of geographical location of manufacturing led to the formation of the concept of Supply Chain Management.

Industry 4.0 The boom in the Internet and telecommunication industry in the 1990’s revolutionized the way we connected and exchanged information. It also resulted in paradigm changes in the manufacturing industry and traditional production operations merging the boundaries of the physical and the virtual world. Cyber Physical Systems (CPSs) have further blurred this boundary resulting in numerous rapid technological disruptions in the industry. CPSs allow the machines to communicate more intelligently with each other with almost no physical or geographical barriers.

The Industry 4.0 using Cyber Physical Systems to share, analyze and guide intelligent actions for various processes in the industry to make the machines smarter. These smart machines can continuously monitor,detect and predict faults to suggest preventive measures and remedial action. This allows better preparedness and lower downtime for industries. The same dynamic approach can be translated to other aspects in the industry such as logistics, production scheduling, optimization of throughput times, quality control, capacity utilization and efficiency boosting. CPPs also allow an industry to be completely virtually visualized, monitored and managed from a remote location and thus adding a new dimension to the manufacturing process. It puts machines,people, processes and infrastructure into a single networked loop making the overall management highly efficient.

As the technology-cost curve becomes steeper everyday, more and more rapid technology disruptions will emerge at even lower costs and revolutionize the industrial ecosystem. Industry 4.0 is still at a nascent stage and the industries are still in the transition state of adoption of the new systems.Industries must adopt the new systems as fast as possible to stay relevant and profitable. Industry 4.0 is here and it is here to stay, at least for the next decade.

Simio Partner Finalist in Franz Edelman Award

The prestigious Franz Edelman Award for Achievement in Operations Research and the Management Sciences was presented at the Edelman Gala on April 16th, 2018 in Baltimore, Maryland. The Franz Edelman competition honors distinction in the practice of Operations Research and Analytics, by both individuals and companies, with emphasis on the beneficial impact of their achievements.

To reach the finals, companies are required to demonstrate how their use of technology is transforming the approach to some of the world’s most complex problems.

Simio is proud to be the provider of the simulation that facilitated one of this year’s finalists, Europcar, through our partner, ACT Operations Research (ACTOR). Our combined technologies have been used to develop Opticar which provides forecasting, simulation and optimization of the processes relating to vehicle rental for the leading European car rental company.

Simulation for Decision Making

The vehicle rental industry is a huge, complex, constantly changing market, with cultural variations across countries. In order to meet dynamic demand, decisions are continuously made regarding fleet assets, their locations, usage and pricing. The combination of AI, statistical modeling and simulation allows all eventualities to be considered and evaluated in order to establish optimum processes and make informed decisions.

Simulation can be used to model the possibilities with respect to both capacity and revenue, helping managers of car rental companies to reduce their risks in terms of planning for optimal fleet saturation. By making quality decisions, they can constantly maximize business opportunity for the company and ensure consistent financial and service performances.

At Simio, we are constantly solving business problems of this kind through simulation. When complex system schedules and decisions are required, we deliver leading edge solutions across many industries, from manufacturing to transportation and logistics.

Simio is proud to congratulate our partner ACTOR, with Europcar, on their outstanding achievement of becoming a Franz Edelman Award finalist.

Optimizing the Smart Factory

In the same way that a product development involves prototyping, the production process for manufacturing that product should also be optimized for maximum efficiency and productivity.Discrete Event Simulation (DES) software approximates the manufacturing process into individual events, so can be used to model each step in manufacturing process for overall performance optimization.

The IT innovations of Industry 4.0 allow data collected from its digitalized component systems in the Smart factory to be used to simulate the whole production line using Discrete Event Simulation software.

Real time information on inventory levels, component histories, transport, logistics and much more can be fed into the model, developing different plans and schedules through simulation. In this way, alternative sources of supply or production deviations can be evaluated against each other while minimizing potential loss and disruption.

When change happens, be it a simple stock out or equipment breakdown or an unexpected natural disaster on a huge scale, Discrete Event Simulation software can produce models showing how downstream services will be affected and the impact on production. Revised courses of action can then be assessed and a solution implemented.

The benefits of using Discrete Event Simulation software to schedule and reduce risk in an Industry 4.0 environment include assuring consistent production where costs are controlled and quality is maintained under any set of circumstances.

Scheduling in the Industry 4.0

Today started badly.

As soon as I hopped into my car, the GPS system was flashing red to show queues of stationary traffic on my regular route to the office. Thankfully, the alternative offered allowed me to arrive on time and keep my scheduled appointments.

In the same way as a GPS combines live traffic data with an accurate map of the city, Simio Software connects real time data sources with a modeled production situation. Just like a GPS, Simio can also impose rules, make decisions, schedule and reschedule.

The major difference is in the scale.

Simio Simulation and Scheduling Software can model entire factories, holding huge quantities of detailed data about each resource, component and material. It leverages big data analysis to run thousands of permutations of scenarios, finding the optimum outcomes for specific circumstances. Lightning fast, it can detect and respond to changes with suggestions that will keep everything flowing in the best possible way.

Thank goodness for Simio, because Industry 4.0 is here.

Smart Factories employ fully integrated and connected equipment and people, each providing real time feedback about their state. Data is constantly collected on each product component, for process monitoring and control. Every aspect of the entire operation is managed through its associated specifications and status data. This large, constant stream of information coming from a known factory configuration can be received, stored, processed and reported upon by the powerful Simio software.

With Industry 4.0, nothing is left to chance. Everything is monitored and optimized, and performance is predicted, measured, improved and adapted on an ongoing basis. Management of so many interconnected components requires a scheduling system that is specifically designed to operate in this dynamic data environment. Simio Production Scheduling Software can be relied upon to provide the integrated solution for enabling technology in the Smart Factories of the future.

We are already seeing a rise in robotics and the increasing digitalization of the manufacturing industry under the effects of Industry 4.0. Soon all components of the factory model will be interconnected, just like my future driverless car that will communicate directly with my GPS to take the best route using current traffic information.

All I will have to do is sit back and enjoy the ride.

Customer Experience

(Guest article by Renee Thiesing)

I recently found myself in a situation that can only be described as completely frustrating. And as an Industrial Engineer, it was even more frustrating because with just a small amount of reorganization and process enhancement, the customer experience could be improved tenfold. No, this aggravating experience did not occur at the Department of Motor Vehicles, it transpired at a children’s ski school drop off counter.

I arrived with my daughter at 8:45am, which is in the middle of the recommended arrival time slot of 8:30-9:00am. The line of about 6 people was making the very small lobby area seem tiny. Besides the fact that the line was moving incredibly slow, when the person at the front of the line arrived at the counter, there was no clear process that occurred. Some people had reservations, some did not. Some people needed to rent equipment, some did not. Depending on your situation, the time that you spent at the counter when you reached the front of the line, varied. It seemed there was no clear benefit to having reservations. And for those poor people who were renting equipment (myself included), after finally reaching the front of the first line, we were sent upstairs to an even more chaotic ski rental area. As we joined the back of another line, I realized that this line was only for boots. Once my daughter was finished getting fitted for boots, I needed to go to the other side of the room for skis. And was the line I waited in for skis the final line? No. Next, we trekked back downstairs to where we started, only to join another line. Here is where we waited for my daughter to finally enter the ski school. After it was all said and done, it was one hour later and the world was left with yet another dissatisfied customer.

I can’t help wonder how some simple changes might improve the system. What if they assigned a certain number of people to arrive at 8:30am, another group to arrive at 8:45am and yet another at 9:00am? Would this arrival process help reduce the time customers wait in line? I believe there should be a clear benefit to people who have reservations. Would their experience be improved if they had a line separate from the people who did not reserve a spot? One of the most annoying aspects of the system was that we had to go upstairs and wait in line to rent our equipment. Non ski school patrons were mixed in with ski school children in this room. At the very least, ski school participants should receive priority for being served. But even better, I would like them to analyze the costs and benefits of moving some equipment rental downstairs to the ski school. I would like to drop my daughter off and let them employees fit her for both her skis and boots right there in the room where she’ll eventually begin her lessons. By having her sizes in my reservation file, they could have the equipment ready in the downstairs area.

This is a very simple system. But since it is broken, perhaps they need a demonstration of how it can be improved. Simulation anyone?

Renee Thiesing
Application Engineer – Simio LLC

Simulation and Strategic Management

Guest article from Marco Ribeiro

Corporations everywhere today face the huge challenge of surviving and growing in an extremely competitive environment. Markets are shaped and reshaped due to constant innovation, customer demands and fierce competition. All these forces demand that corporations continuously reinvent themselves trying to maintain competitive advantages that differentiate them from the competition.

Strategic planning in such an environment is a difficult challenge that corporations must overcome successfully. Corporate strategic planning deals with such complex issues as:

    * Understanding the market and its future trends – understand suppliers, competition, their competitive advantages and market positioning. Know the future trends that will shape the market.
    * Future resource allocation – how the corporation’s resources should be organized in order to maintain an efficient operation.
    * Scope of operations -in which businesses should the corporation operate, which ones should be dropped out
    * Diversification of the corporation’s business – should the corporation focus its operations in a small and related set of businesses or should it look to diversify to heterogeneous businesses
    * Future structure of the company – draw the boundaries of the corporation and determine how these boundaries will affect relationships with suppliers and customers

The strategy defined will address all these issues in detail and determine the future direction of the corporation.

Can we use simulation to support the strategic planning process?
Yes, we can. As Thomas Davenport and Jeanne Harris describe in their book: Competing on Analytics: The new Science of Winning, we will see an increasing demand and use of analytical technologies supporting corporation’s decision-making processes.

Simulation can play an important role by helping managers create models of their markets and processes and “toy” with them in order to get a deeper understanding. We can also use simulation to support such efforts as portfolio analysis and management, helping managers determine how to most effectively manage and configure their product life cycle. We can build models of processes and determine the most efficient configuration. Simulation is a valuable tool to test scenarios and make better business decisions.

Marco Ribeiro
LinkedIn Profile

Industrial Engineers are Happy

I just saw an interesting article written by the Institute of Industrial Engineers (IIE) citing a National Opinion Research Center study at the University of Chicago. According to that study, Industrial Engineering is one of the top ten occupations when rated by job satisfaction and overall happiness. I have long been an IE evangelist, because I feel it is a great career choice, but it never hurts to have some additional evidence.

The study goes on to evaluate compensation for each of those professions and concludes that IE’s are the third highest paid group out of those top ten happiest careers. While I think it is a mistake to choose a career primarily based on financial compensation, it is a nice bonus when a career that makes you happy also pays well.

Here is a short article summarizing the results: Industrial engineering for your mental health?

I’ve always felt that IE was one of the best career choices possible. And I think this is especially true in the field of simulation.

I personally try to visit a few high school classes each year to help students discover our profession and help motivate them to excel in the classes that they need to be successful in engineering. IIE can help you do this.

I urge you to also get involved with your local high schools and help spread the word.

Dave Sturrock
VP Products – Simio LLC