Simio Training and Certification – Introducing Simio Fundamentals

Learn from Simulation Experts, Advance Your Skills and Knowledge.

Organizations across every industry need individuals with simulation, modelling, and digital transformation skills to help transform their business processes. Simio Fundamentals will help you learn, relearn, and validate your simulation and modelling abilities with this introductory course. Simio Fundamentals is an online course which consists of 14 modules. Each module was designed and created by simulation experts including Dr Jeffery Smith, a professional with decades of experience in teaching and solving simulation-related problems.

The 14 modules that make up the Simio Fundamentals training are all video instructions consisting of practical information that eases you into the technical aspects of simulation, animation, and modeling. Although the course is focused on Simio’s simulation software, the knowledge and skillset to be gained can be applied in other simulation ecosystems. This is why interested students, educators, employers, and employees should view this course as one that covers the fundamentals of simulation.

Is the Simio Fundamentals Course for You?

The course was designed for Simio customers and students across the globe who currently use Simio simulation software and digital twin solutions for learning and simulating business processes. Individuals within this category can up their skills and accomplish more with Simio by taking advantage of the information and practical solutions in the fourteen modules.

Simulation, modeling, and digital twin solutions are currently being employed across diverse industries to monitor and manage complex processes, as well as, implement new business concepts. Thus, system integrators, project managers, data analyst, and engineers can also take advantage of the information in this course. Simo Fundamentals offer you, regardless of your experience with simulation, the opportunity to re-learn simulation from scratch and an entry point to mastering digital twin technologies.

Employees can also take advantage of the certification opportunity that comes with completing the Simio Fundamental course and the certification process that comes with it. A Simio Fundamental Certification will highlight your abilities in simulation and modeling tasks. The certification will also highlight your ability to apply simulation processes in solving complex business operational challenges and real-world problems. Employers can also take advantage of this opportunity to teach staff about the basics of simulation and train them on its application within a facility. This ensures everyone is on the same page and understand the integration of simulation technology into business processes.

How Important Is Simio Fundamentals to Your Industry?

Simulation and its interrelated fields such as scheduling, digital twin, and process control are used across every industrial niche where business operations take place. This means regardless of your industry, some knowledge of simulation and its processes will be helpful to an individual’s career and business growth. 

In the tech or IT industry, simulation is widely used to test and explore different business processes, implement new strategies, and analyze prototypes. The Simio Fundamentals course include modules that cover modeling and animation which are important for testing new ideas, hardware designs, and IoT devices to note how they will function in the real world. This is where knowledge in simulation and taking advantage of the Simio Fundamentals course comes into play.

In education, Simio simulation software is currently being used in 800 universities across the globe to teach students about STEM-related concepts. This includes modeling and animation which are staples of engineering and computer science. Educators and students can now learn the fundamentals of simulation and working with Simio by studying the modules in this course.

In banking and finance, simulation is being used to design check out points to deliver enhanced customer services to clients. Simulation and modelling can also be used to organize the layout of banking halls to optimize productivity within a workforce. Managers, stakeholders, and decision-makers can take advantage of this course to learn about simulation and its ability to gain business insights from the banking and finance industry.

Taking a look at manufacturing, simulation plays an important role in streamlining manufacturing process including production, material handling, and the varying relationships that go on in today’s shop floors. The rise of industry 4.0 has also created an avenue were simulation thrives. With knowledge of simulation, manufacturers can implement new strategies and industry 4.0 business concepts in facilities. Simulation also provides the opportunity to explore concepts of generative design for complex systems and products.

Like the manufacturing industry, production-based industries such as in Oil & Gas, mining, and the pharmaceutical industry, simulation also has an important role to play. Knowledge of simulation can be applied to enhancing material handling processes, digitizing shop floors, and determining time dependencies and other related modeling tasks. The facility management and hospitality industry can also take advantage of simulation to implement new processes and monitor the diverse ongoing systems within a facility. The Simio Fundamentals course provide the foundation needed to apply simulation and modelling techniques in these industries.

Gaining an understanding of Simio through the Simio Fundamentals Course gives you the knowledge needed to apply simulation in your industry however you choose. This includes solving real-world problems, educating students, and implementing new business concepts.

Introducing Simio Fundamentals

Simio Fundamentals is a course offered by Simio University and it covers the fundamental of simulation and Simio. The course is made up of 14 modules which include the following subject matters:

  1. An Introduction to Simulation – This introduces simulation and defines its application and impact.
  2. Introduction to Simio & Success Tips – This provides an overview of Simio, its interface, and simulation tools.
  3. Introduction to Animation – This introduces basic animation concepts and the use of animations in Simio.
  4. Simio Modelling Framework – This introduces Simio’ modelling framework, interfaces, and commands.
  5. Simio Standard Library Fixed Objects – This module includes workshops that introduce the resources available to you when using Simio.
  6. Balking and Reneging – A workshop that focuses on balking and reneging.
  7. Task Sequences – This introduces the basics of task sequencing and an introduction to materials.
  8. Controlling Movement
  9. Material Handling – This introduces the use of Simio to simulate material handling and the basics of manual and automated material handling.
  10. Working with Model Data – This introduces the management of data tables and scheduling with Simio.
  11. Process Logic – This module is an introduction to processes and its related concepts.
  12. Debugging Tools and Techniques – This introduces the debugging techniques available with Simio.
  13. Optimizing with OptQuest
  14. Building Custom Object Definitions – This introduces you to Simio’s object libraries and how to make use of them.

Each module was designed by simulation experts and Simio professionals who have acquired real-world experience with applying simulation in diverse situations for decades. The modules are in video form and each module runs for 35 to 90 minutes depending on the topic. Simio Fundamentals modules are designed in such a way that you can complete the entire course within two weeks. The modules also consist of 23 workshops that provide you with the opportunity to get hands-on with simulation with Simio. Educators can also make use of these workshops as teaching tools for students.

It is also important to note that this course is licensed for and per individual use. Thus, educators who intend to use it in their classrooms can contact us to learn more about how we can help. Subscribing to the course gives you access to the videos and workshops in every module. This means you can pace the learning process to fit your schedule. If you would like continuous access to the course, you can choose the licensing option that makes this possible.

Next Steps…

The benefits of having an understanding of simulation and its application in the real world are varied for students and individuals. These benefits include:

  • Providing prospective employees with an entry point into industries that deal with simulation.
  • Helping students to learn about simulation with Simio and prepare them for the challenges in today’s workspaces.
  • Receiving business insights from simulated models of real-world processes.
  • Acquiring a Simio certificate that proves you understand simulation and its applications.

Simio Training and Certification – Introducing Simio FundamentalsThese benefits are why over 800 universities and hundreds of enterprises make use of simulation and Simio simulation solutions to solve complex challenges. Get started with Simio and simulation today by registering for the Simio Fundamentals course.

Integrating Simulation and Digital Twin Technology in the Hospitality Industry

The numbers are in and they do look good for the hospitality industry which consists of hotels, restaurants, and other hospitality-related services. According to Forbes, profitability in the hospitality industry is finally on the increase after the slump of previous years. The report further stated that the net profit margins for full-service restaurants grew by approximately 6% which is 3.8% more than the previous year. The National Restaurant Association expects this growth to continue but early wins must also be consolidated if this is to be achieved. And this is where Digital Twin Technology comes into play.

With the expected growth figures also comes challenges and in the hospitality industry, these challenges generally include fending off the competition and enhancing operations to reap increased rewards. In terms of competition in the hospitality industry, the following statistics paint a clearer picture. In 2018, approximately 60,000 new restaurants and lounges were opened in the United States while 50,000 either filed in for chapter 11 or were closed down for other reasons. Although at the end of the year, the industry grew with the addition of 10,000 restaurants, this mass closure still highlights the competitive nature of the industry.

The competitiveness in the hospitality industry is turning many small and large scale stakeholders to turn to emerging technologies to ease operational deficiencies. This is why today, the hospitality industry has become one of the major drivers of innovation in robotics, artificial intelligence, digital visualization, and the internet of things (IoT). The aim is to collect data from every aspect of a hotel or restaurants operational chain and use that data to receive the business insights needed to stay ahead of the competition.

Today, most hotels make use of interconnected devices to simply customer requests and analyze their peculiarities in order to deliver bespoke services. Examples of this include the use of concierge robots by the Hilton group and the design of smart hotels by Marriot and other stakeholders.

And to what benefits?

Integrating digital technology in the hospitality industry has led to a 40% increase in revenue for online travel agencies (OTAs) who streamline and personalize their services for customers. In brick and mortar hospitality facilities like the Marriot hotels, its financial report of 2018, highlighted a 38 percent increase in revenue with emerging technologies playing a starring role in simplifying operations. This led Arne Sorenson, CEO of Marriot, to state that ‘digital transformation is not only speeding up every aspect of our business, but it is also broadening operations’. And this transformation, as well as, the benefits they bring can be broadened much further with the integration of Digital Twin technology.

What is A Digital Twin?

A digital twin refers to virtual representations of physical products, systems, facilities and the processes that occur in them. The technology can be used to create digital replicas of actual physical assets and processes and also integrate potential assets onto the created virtual environment. This means every asset that functions in a shop floor including devices or equipment and all business operation or process can be recreated in a digital environment.

Digital twin environments also create an enabling environment for testing new business policies, operations, and assets to access their performance levels before any physical implementation is undertaken. When put beside the recent adoption of smart technology in the hospitality industry, it is easy to see why digital twin technology is the solution every stakeholder has been waiting for to broaden business operations.

One of the major features of the digital twin is its ability to virtualize every asset and process that occurs in an environment. In the hospitality industry, these assets may include; the smart devices used in rooms, check-in and check-out points, robots, the equipment used for logistics and supply chain management, inventories, and every process that produces data. This means when correctly deployed, a digital twin can recreate assets and processes from the deepest parts of a hospitality system in a digital ecosystem.

The Digital Twin and Enhancing the Hospitality Industry

The easiest way to understand how digital twin technologies can be leveraged to gain an edge over the stiff competition in the hospitality industry is through case studies and CKE Restaurants Holdings, Inc. provides an example.

CKE Restaurants Holdings, Inc. digital twin Story is one that showcases how harnessing digital twin technology and virtual reality can be used to test and implement new operational policies within the hospitality industry. In its case, CKE recreated hundreds of assets and kitchen configurations using the digital twin with the aim of deciding the best configuration that will increase productivity in its Carl’s Jr and Hardee’s restaurants. With the aid of Simio’s digital twin solutions, restaurant floors and kitchens were digitized which provided the perfect environment for reorganizing shop floor assets to reduce employee traffic and create an enabling environment for customers.

To achieve the level of detail needed to accomplish this task, CKE had mapped out every production aspect that occurs within a restaurant down to the plate cleaning process. With this data, accurate simulations could be executed which yielded highly-accurate results. Thus, integrating new equipment and testing how they function with other variables and assets within the restaurant was made possible. This meant receiving accurate business insight into new policies and the effects of introducing new assets before effecting a physical implementation.

According to Forbes, the integration of Simio’s digital twin helped CKE Restaurants, Holding, Inc. manage hundreds of simulations that consisted of the introduction of diverse assets and processes into the digital model. This allowed the restaurant to predict the effects of introducing approximately ten new equipment to the shop floor, as well as, test the efficiency levels of five layouts for the kitchen. The use of a digital twin also helped analyze new designs that would assist CKE with easing the workload on employees which would lead to higher employee retention in an industry notorious for low retention rates.

The example of CKE Holdings, Inc. still leaves the question of if the digital twin can enhance operations in larger more complex facilities. The short answer to this is, definitely yes!

Digital twin technologies have been made use of in large industrial settings such as Nestlé’s and Boeing facilities to implement new ideas and enhance production. Although these examples highlight the importance of digital twin technology, the focus is on the hospitality industry which leads to the longer answer.

In the large hotels with 300 rooms and above, more operational processes occur that dwarf the example highlighted in the CKE case study. These processes include; logistics and supply chain management, tracking the orchestration of hundreds of customers, power consumption, and correctly assigning workplace assets to meet demand. Other smaller systems within a large hotel’s immediate environment are the valet and parking system, concierge system, and manual workflows.

As stated earlier, digital twin solutions are capable of recreating diverse assets, processes and system in a virtual environment when correctly applied. This actually makes the digital twin a solution custom-built for large hotels where the need to keep track of multiple processes within a system while implementing new ideas is a regular occurrence. With the aid of the digital twin, every data produced in large facilities can be collected and analyzed against the different assets within the system. This gives the system integrator or manager a contextual insight into every aspect of running a hotel facility in real-time.

Furthermore, the digital twin of large hotel facilities can be used to run both discrete and continuous event simulations to better understand the events occurring in different systems. A discrete event simulation can be used to test how the implementation of building of an additional check-out point at the parking lot will ease driving and foot traffic before a physical implementation is considered. Also, a simulation of the power consumption that occurs within the facilities can provide insight into which assets or processes can be periodically shutdown to reduce consumption.

The benefits of Adopting Digital Twin in the Hospitality Industry

 Although the earlier case studies provide an insight into the benefits of the digital twin to the hospitality industry, more information is sometimes needed when making decisions. In this case, the decision to be made is choosing to enhance operations using digital twin solutions.

One of the important benefits of integrating a digital twin is the clarity of purpose it provides to facility managers and hotel owners. The use of a digital twin means decisions no longer has to be made in the dark. An accurate digital twin built with every asset, process, and data coming from a hotel or restaurant is the perfect environment for testing out anything before implementation. The test can be as extensive as analyzing the effects of a new equipment transportation system or how automating a business process will turn out. The test can also be as little as analyzing how changes in shelf heights will increase employee productivity.

Another important challenge hospitality businesses face involves the reduction of operational expenses without having to reduce the quality of services offered. Here again, the insight a digital twin provides can be helpful with reducing waste. An example of this is the use of the digital twin by KONE, an elevator company. KONE makes use of digital twin technology to understand how people move through buildings and the decisions they take when riding an elevator. The knowledge gotten from the use of a digital twin helped the company cut out three to four minutes from the average elevator commute. This, in turn, reduced maintenance cost and increased productivity for building owners.

KONE’s case study highlights the fact that hotel owners can make use of the digital twin and scheduling software to analyze commutes, reception traffic, kitchen and dry cleaning process with the aim of increasing workforce productivity. The model can also be used to enhance customer experience by reducing commute from the reception floor to hotel rooms. As for restaurants, this can be taken further to simplify the drive-through process and increase worker efficiency thereby eliminating waste.

The journey to a smarter hospitality industry also provides the perfect environment for enhancing productivity and providing seamless experiences for customers. Embedded devices and IoT solutions can be used to map out customer attractions and the areas that witness more customer traffic. With this information, simulations run through the digital twin can create optimized schedules for visitation periods. This will ensure that customers do not wait in long queues before being able to access areas of attraction within a facility.

Carving a Niche in the Competitive Hospitality Industry

 Staying afloat in the hospitality industry in order to reap a part of its staggering $550billion revenue requires some effort. These efforts consist of creating an efficient system that takes care of every need of the customer. With advancements in technology, the task of creating that system has become more streamlined and visible to business owners. The digital twin offers visibility and the ability to access real-time information before designing or recreating efficient systems.

CKE Restaurant Holdings, Inc.’s use of Simio’s digital twin solutions provides an excellent case study that highlights how important digital twin is to the transformation of the hospitality industry. With these solutions business owners can better access both small and large scale operational process and enhance these process to the benefit of your customers. You can learn more about the competitive edge the digital twin offers your hospitality and restaurant facilities by speaking to a Simio representative today.

Resources:

https://www.google.com/url?sa=t&source=web&rct=j&url=https://marriott.gcs-web.com/static-files/b82978a6-9d28-4e38-9855-fc4ae2cebe11&ved=2ahUKEwjH8YGxjKPlAhWNTsAKHesCC3EQFjAOegQIBxAB&usg=AOvVaw1wOGkSQxcJ8O7VZBmYm1xF

https://www.nextguestdigital.com/blog/hospitality-digital-tech/

https://www.simio.com/applications/industry-40/Digital-Twin.php

https://www-forbes-com.cdn.ampproject.org/c/s/www.forbes.com/sites/lanabandoim/2019/09/25/how-cke-restaurants-is-using-virtual-reality-to-innovate/amp/

https://www.google.com/url?sa=t&source=web&rct=j&url=https://inbuildingtech.com/uncategorized/digital-twins-proptech/&ved=2ahUKEwi6ieSMjaPlAhWMXsAKHYvxC94QFjACegQIAhAB&usg=AOvVaw2JkDmpLHU5Vs0BI4inPD4n

Analyzing the Paradigm Shift from Production Scheduling to Simulation-Based Scheduling

Through the long centuries of man’s existence, man has always produced materials and products for specific uses. But at the turn of the 17th century, something interesting happened. Man had built industrial equipment for the first time which ushered in the age of industrialization. This age came with larger facilities dedicated to every aspect of the production lifecycle as we know it today. With these large facilities came the need to manage hundreds of workers, the transportation of materials, and the stages of production for a product. And as early as the 1800s, the need for production scheduling methodologies was apparent.

This need led to the development of scientific management processes by legendary figures such as Henry Gantt. In the 1800s, charts and manual data collection techniques were introduced to manage production scheduling challenges. Although these solutions worked perfectly with the industrial equipment and facilities of that age, advancements in production technology made them redundant by early 1900s.

Moving forward to the 80s, production scheduling was being defined as the process of planning to ensure the raw materials and production capacity within a facility are optimally allocated to meet demand. With time, this definition was updated to account for complex tradeoffs between competing priorities and the hundreds of varying relationships that occur on manufacturing shop floors.

To handle these complex trade-offs and production variables, advanced planning and production scheduling systems where developed. These systems or solutions were fondly called APS solutions and they accounted for the materials available for a production cycle, available labor and production capacity. APS systems successfully handled the scheduling of complex production processes by applying a constraint-based approach to scheduling. Thus, these tools created schedules for:

  • Capital-intensive production process where constraints such as equipment and plant capacity where constraints to deal with
  • Production processes where hundreds of components needed to be assembled when building the product.
  • Production processes with changing schedules which were not predicted at the beginning of the process.

The success of production scheduling systems also led to the creation of hundreds of enterprises offering APS solutions and services to ease complex scheduling activities. Other spin-off solutions such as customer relationship management applications and enterprise resource planning solution were also developed due to the success of production scheduling systems.

As with most great technological advancements, the traditional product scheduling solutions began to meet more complex situations than it could handle due to the changing manufacturing landscape. These changes are both technological and conceptual in nature. In terms of technology, the advent of Industrial Internet of Things, smart manufacturing equipment, and automation were changes traditional scheduling software could not deal with. While the conceptual changes include the need to account for all data produced on the shop floor, make predictive analysis, manage disruptions in real-time, and cybersecurity challenges among others. These changes limited the efficiency of production scheduling software in diverse ways which will be further explored.

The Limitations of Production Scheduling Solutions

The limitations of production scheduling tools are all due to the increased complexity of today’s manufacturing and industrial facilities, as well as, the demand for more insight by enterprises. These limitations include:

Flexibility Challenges

The ever-changing processes in modern manufacturing facilities and the introduction of new equipment and process to the shop floor must be integrated into a functional scheduling system. The ability of traditional production scheduling tools to adapt to these changes is limited which means the schedule they produced will be skewed.

Challenges Integrating Real-Time Occurrences

The effects of downtime in manufacturing and industrial facilities have been highlighted in hundreds of reports. Downtime can be caused by a variety of issues but for the topic of production scheduling, a machine going down in a shop floor is the perfect scenario. Production scheduling tools will struggle to predict this event or even take it into account to reschedule events in real-time.

Although production scheduling tools can create schedules that take into consideration defective equipment, they make use of approximated data. This means the schedule they produce are static in nature and would not take into consideration real-time data such as the location of the machine, output at its workstation etc.

Requires Numerous Adjustments

This constraint is a follow up to the challenges production scheduling tools have with integrating real-time occurrences. To prevent trashing the systems integrator must create multiple custom algorithms for different scenarios. This means the product scheduling tool takes these algorithms and try to apply them to a new problem within a facility. To accomplish it multiple adjustments must be made to the initial adjustment which defeats the ability to create reschedule in real-time. According to Oracle, this challenge means the traditional product scheduling tools will struggle with finding good solutions to scheduling problems even when they exist.

With these limitations, a new process to accurately manage production scheduling tasks was needed. This led to the paradigm shift from traditional production scheduling solutions to simulation-based scheduling. Simulation-based scheduling involves the imitation of the operation of a real-world process over time using a digital model. The process involves building a simulation model of the physical process and populating the model with the detailed events and processes that occur in the real-world. The simulation model can then be run to produce an optimized production schedule.

The Impact of Simulation-Based Scheduling

It is important to note that simulation-based scheduling can be handled in two ways. These are through a discrete event simulation and a continuous simulation process. The discrete event simulation models the operation of a manufacturing or industrial facility as a discrete sequence of events that occur with time. In this model, events occur at a particular instant in time and record the change of state in the facility.

On the other hand, continuous simulation models continuously track the events and the changes they produce in the facility. Both the discrete event simulation and continuous simulation model take production scheduling to heights traditional production scheduling tools cannot reach. This paradigm shift has made real-time production scheduling more accurate and flexible enough to deal with the changes that occur in modern facilities.

As stated earlier, the introduction of production scheduling tools led to the development of other complementary technology solutions and this is also the case for simulation-based scheduling. One such concept is simulation-based Digital Twin solutions. The Digital Twin involves the mirroring of physical objects to create a virtual model through simulation-based engineering tools.

The ability to create Digital Twins of every facility and industrial process also takes simulation-based scheduling to new heights. Creating virtual mirrors of real-time systems or facilities and simulate the complex process that occurs in these facilities to create a far more accurate schedule than traditional production scheduling tools.

In the case off dealing with downtime, simulation-based digital twin environments can collect data from real-world sensors and use the data to predict asset –manufacturing equipment—behavior. This allows for the scheduling process to account for defective equipment and quickly reschedule the production process around the defective equipment. Also, simulation-based scheduling tools can manage what-if scenarios better than the alternative. Making it possible for operations teams to simulate possible challenges and create optimized schedules that take these constraints into consideration.

An example of how simulation-based scheduling alongside digital twin technology has been used to develop more efficient schedules. Is in the case of CKE Restaurants. Here, a Digital Twin of the restaurant facilities made it possible to create implementation schedules, supply and delivery schedules in its kitchen facilities. The end result was a more efficient production and service process driven by simulation-based scheduling and Digital Twin solutions.

How Simulation-Based Scheduling Transverses through Diverse Industries

Traditional production scheduling tools were designed and developed primarily for use in manufacturing settings and this still remains its key area of application. Unlike production scheduling, simulation-based scheduling can be integrated into any industrial process to produce accurate schedules.

Once again, its affinity with Digital Twin technology makes this possible. This is because, with digital twin technology, every process and asset in an industrial setting can be modeled and brought into a digital environment. The integration of simulation-based software in this digital environment can then simulate the industrial process and create schedules for them. Simulation-based scheduling can be used in the healthcare industry, pharmaceutical facilities, dockyards, ports, and in every facility where a process can be modeled and mapped.

The rise of Industry 4.0 manufacturing facilities and processes where data is king provides another avenue for simulation-based scheduling to prosper. Smart factories are being run by machines and devices with sensors, embedded systems, and system on modules solutions. This makes it possible to assess data from every asset and process in a facility.

Simulation-based scheduling software can leverage the data collected in an Industry 4.0 – compliant facilities to create real-time schedules. Computing simulations of schedules can also be achieved in real-time with increased accuracy due to the widespread availability of data in facilities that integrate Industry 4.0.

Simulation-Based Scheduling and the Road Ahead

The paradigm shifts from production scheduling solutions to simulation-based scheduling is still very much an on-going journey. This is due to emerging technologies which complement and enhance the use of simulation-based scheduling software. Examples include the rise of cloud-computing and high-performing computers (HPCs). These technologies make it possible to create models of very complex systems such as facilities or processes with thousands of variables while producing accurate scheduled for them.

The combination of these technological process will enhance real-time scheduling and rescheduling as we know it. As simulation-based schedule software leverage on the cloud and HPCs, complex simulations can be done in micro-seconds thereby delivering accurate real-time results that enhance productivity in industries. Thus completing the paradigm shift from manual and constraint-based scheduling to a responsive real-time scheduling era.

How to Sell the Idea of Digital Twin to Your Manager

The business world as we know it is changing. Never have there been so many emerging technologies, models, and business concepts competing for the attention of the business community. Today, we have cloud computing services, the Internet of Things, Artificial Intelligence, Robotics, Automation, Blockchains, and the Digital Twin providing timely business insights for enterprises. This is why the internet and even physical business entities have hundreds of salesmen and women trooping in and out of your private space. Selling the ‘next best thing’ in technology like pharmaceuticals marketers do, to CTOs, CIOs, and other decision-makers.

 In this whirlwind of changing activities and millions of ads advertising the best technology solutions is Digital Twin technology. For those who know the benefits of the Digital Twin and its ability to enhance every aspect of an enterprise’s operation, the challenge of convincing management to take a chance with it remains. This leaves one with the question of what are the best techniques to sell the idea of integrating Digital Twin technology to the boss? As with most sales challenges, the traditional answer generally involves listing its value-added propositions and outlining the returns to be made investing in the technology.

Although the traditional answer to selling new ideas to management remains efficient, the increased competition among cutting edge tech services means more selling points are needed. Thus, to effectively answer the question ‘how do I sell the idea of Digital Twin technology to management’, here are some new and timely tips to consider.

5 Tips for Selling the Idea of Integrating Digital Twin Technology to Decision-makers

As a sales representative, business development, or system integrator staff/employee who is part of a team, the successful introduction of new technology solutions depends on your approach. This is because you will serve as the driving force behind ensuring the implementation of Digital Twin technology improves the company’s operational processes to deliver optimal services to customers. The tips for selling the idea of Digital Twin Technology include:

Making Your Case with Data – The task of convincing those who control the money and decide what investments are to be made is not for the faint-hearted. You must come prepared and one of the ways to prepare for every question that may come your way is having the required data in place that answers the most important questions. According to a Mckinsey report, integrating data analytics in the right place or in your sales pitch is one way to convince skeptics on the importance of Digital Twin technology. The data to be included must be relevant to the situation or scenario you intend to create when selling Digital Twin Technology. To simplify your search for adequate information, here are some of the data you will need:

  • To answer the question of the adoption rate and how the competition intends to use Digital Twin technology to enhance business operations, the IDC data on adoption can help. The IDC forecasts that 40% of IoT platform vendors and 70% of manufacturers will be making use of Digital Twin technology by 2022.
  • If the question of how digital twin technology can help increase the revenue of the business, data from the Juniper Research can help you answer the question. According to the research, the use of Digital Twin technology has helped enterprises increase their revenue by 25 to 35%. This is due to the ease in which business insights can be gotten from complex processes and the predictive analytical features of Digital Twin technologies.

Armed with this information, your sale pitch will highlight the importance of staying ahead of the competition by integrating Digital Twin technology to simplify complex processes and difficult business decisions. It can also be applied to drive development and predict future scenarios in a wide variety of industries including manufacturing, architecture, construction, technology, engineering, and healthcare industries.

Make Use of Case Study – With your data in place, the next step to convincing decision-makers in your organization is through the provision of confirmable case studies on how Digital Twin technology can help. This is where a little personal effort comes into play if interested in creating personalized case studies for stakeholders to scrutinize. You can find applicable case studies that highlight how Digital Twin technology has been applied and is still been applied by your competitors here:

  • You can find case studies on the application of Digital Twin technology in the aviation industry, automotive industry, manufacturing, healthcare, mining, and engineering at Simio’s resource center. The case studies here are practical examples that can be integrated into your presentation when making your sales pitch.
  • If you are certain a pitch with case studies may not be enough, then more effort is needed from your end. This effort involves the design of a Digital Twin of a phase of your facilities operations to showcase the benefits of a digital model of physical systems where events can be simulated. Many Digital Twin technology providers offer free trials which can be used to accomplish this task. You can make a request for a Simio Demo to quickly kick start the process of designing a Digital Twin.
  • Provide specific answers to your enterprise or the enterprise’s pain points. Once again, although case studies may be customized to show how Digital Twin technology alleviate business challenges, creating a functional model will do more to pass the message across.

So, the second tip here is making use of case studies to address exactly how Digital Twin technology can be used to eliminate specific challenges an enterprise experiences. The efficient use of case studies is one of the quickest ways to get the ball rolling when trying to sell Digital Twin solutions to the decision-makers in your organization.  

Showcase the ROI – It is a well-known fact that one of the most publicized benefits of Digital Twin technology is the returns it offers enterprises who choose to invest in it. Also, your manager, as well as, stakeholders would definitely expect a breakdown of how much the investment will cost and the returns to expect. It is important to have this in mind because, finances are generally the deciding factor that determines if a positive decision will be made.

According to research by High Tech Software Cluster, the threshold for integrating Digital Twin technology for enterprises costs approximately €50, 000 ($55,000). The study goes on to show that to create digital twin solutions for more complex systems may cost approximately €150, 000 or $165,000. As stated earlier, the returns on this investment can be as much as 35% of the total cost needed to create a Digital Twin. In some cases, returns of approximately 50% have also been reported which highlights the financial leverage Digital Twin technology offers enterprises.

As you probably know, approximations are not enough to sway managers and other decision-makers. This means more exact figures that showcase the total cost of owning a Digital Twin of complex process is needed to successfully sell the idea to management. Calculating the total cost of ownership can be done using an estimate calculator. The estimate calculator is capable of calculating the cost of purchasing the necessary hardware, software packages, energy costs, and other costs associated with owning Digital Twin technologies.

It is also important to highlight any supporting technologies that will be needed for data collection if an accurate Digital Twin is to be developed. These technologies may include embedded systems in manufacturing equipment, IoT devices, cloud computing services to scale simulations, and augmented reality devices. These complementary technologies and services may also add to the bottom line of designing a functional Digital Twin environment of complex systems. Thus, using the estimate calculator to highlight the ROI of creating a Digital Twin is one of the major steps that must be taken to convince management about the need for a Digital Twin.

Ask the Right Questions – During strategy sessions, some push backs are expected and this will definitely be the case when selling the idea of a Digital Twin to enhance business operations. This push back should be expected even after using data to answer questions, creating case studies or applicable scenarios, and defining the return on the investment made. When the expected push back occurs, the best way to understand how management thinks and the challenges they foresee is by asking questions. Asking the right questions provides you with the foundation needed to provide the answers needed to convert non-believers into believers.

The questions to ask are varied and should be determined by the level of skepticism shown by particular decision-makers. Some of the questions you must ask to assess the mindset of your superiors include:

  • Do you need more information to make a decision and what information do you need? The purpose of asking this question is to have an idea about what your audience or manager is thinking. Remember that IT managers are notoriously skeptical about new technology therefore, having an understanding of the prejudices management has against Digital Twin technology is important.
  • I know you love the way things are going, but would you be interested in a 6-month trial? If the feedback you get from the manager and decision-makers is negative due to their satisfaction with how things are within the company, this question might help break the ice. Satisfaction with the present condition of things can dampen the enthusiasm for Digital Twin technology. But pushing for a trial could be the turning point that turns ‘no’ into a ‘yes’.
  • If it helps you surpass your personal targets will you try it? It may come as a surprise to you that managers think more about self-preservation than the success of a business. This is one reason why your manager may be resistant to change. Thus, making your questions a bit personal and putting the manager’s self-interest first may be the strategy that gets him/her to experiment with Digital Twin technology.

These questions should be asked without sounding too pushy to your manager and other decision-makers. This is because a pushy attitude could be interpreted as a desperate attempt to make some money for yourself on the side.

Associate the Integration of Digital Twin with Achieving Business Goals – Finally, the ace in your back pocket should be tying the integration of Digital Twin technology to the ideology of the enterprise. This includes highlighting how Digital Twin can be used to realize the business’s mission statement or meet certain key performance index (KPIs). With the answers to the questions asked above, accomplishing this task should be a bit easier than the first steps of selling the idea to management.

Your ability to showcase the benefits of Digital Twin technology and how it meets your company’s culture or KPIs is determined by your knowledge about the transformative powers of the technology. To accomplish this, a lot of research is needed to know more about how this emerging technology can be applied to your business case. Once again, you can turn to the information highlighted in these tips to refine your pitch to resell the idea of integrating Digital Twin technology to your manager. For more information, you can also choose to attend conferences centered around the adoption of Digital Twin technology in your industry.

The Benefits of Digital Twin Technologies is Worth the Extra Effort

Digital Twin technologies create value in diverse ways that can ease the effort expended doing your job. Some of the more important benefits include:

  • Descriptive Values – The ability to visualize the status of an asset in real-time via its Digital Twin is valuable when those assets or facilities are either remote, complex, or dangerous. In plants and other facilities, a Digital Twin makes information easily accessible for interpretation and to make business decisions.
  • Diagnostic and Standardization Value – In facilities where hundreds of variables are involved with production, Digital Twin technology can be used to stabilize these variables, pinpoint the root cause of problems, and leverage analytics to standardize complex systems.
  • Predictive Value – Industry-leading enterprises like General Electric have used Digital Twin technologies to improve efficiency and the output of plants. This was accomplished using a Digital Twin to propose solutions that can lead to customer satisfaction and profitability.

You can learn more about getting started with Digital Twin technology in your facilities, plants, and business by speaking to a Simio engineer today.