Integrating Digital Transformation to Enhance Overall Equipment and Facility Efficiency

The digital transformation of traditional business process and the assets that run them have become one of the raves of the moment. A Forbes-backed research highlights just how popular the topic of digital transformation and the tools needed to accomplish it has become. Statistics like the fact that 55% of business intended to adopt digitization strategies in 2018 which grew to 91% in 2019 highlights just how popular this transformation has become.

The reason for its increased adoption rate is the ease it brings to managing business operations, facilitating growth, and a healthy return on investments made on digital transformation. The numbers from the 2019 digital business survey prove these benefits outlined earlier to be true. 35% of organizations have experienced revenue growth while 67% believe it has helped them deliver better services to customers. But despite its popularity, the adoption of digital transformation brings up a multitude of question many enterprises still struggle to answer. This post will answer some of the more important questions with special emphasis on facility management and efficiency.

What is Digital Transformation?

Digital transformation refers to the integration of digital technologies into business operations to change how an enterprise operates and delivers value to its customers or clients. Digital technologies generally refer to devices and tools that enable access to the internet thus its use allows organizations to bring operational processes to cyberspace.

The above definition is a simpler version of what digital transformation is about but because digital transformation looks different for every company and industrial niche, other definitions exist. In terms of enhancing equipment and facility efficiency levels, the definition by the Agile Elephant better encapsulates its meaning. Here, digital transformation is defined as digital practices that ‘involve a change in leadership thinking, the encouragement of innovation and new business models, incorporating digitization of assets, and increased use of technology to improve an organizations entire operations.’

In facility management, assets refer to the equipment, tools, and operation stations within the facility while new business models and innovation refer to the integration of digital technology concepts. These concepts can be the digital twin, discrete event simulation or predictive analysis.

What is Overall Equipment and Facility Efficiency?

Productivity within manufacturing facilities and warehouses are generally measured using the overall equipment effectiveness (OEE) concept. This concept measures the maximum output machines can achieve and compares subsequent output to the optimized value. In cases where the machine or equipment falls short, the OEE falls from 100% and the production cycle may be termed unproductive.

The OEE is calculated using three separate components within facilities and these are:

  • Availability – This focuses on the percentage of scheduled time an operation is available to function.
  • Performance – This refers to the speed at which work centers compared to the actual speed it was designed to achieve
  • Quality – This refers to the number of goods produced and the quality levels compared to optimal production qualities.

Although the OEE process is quite popular and has proved to be efficient, a critical analysis shows that it does not take into consideration some important metrics. OEE calculations do not include the state of the shop floor, material handling processes, and connections to both upstream and downstream performances. This is why its effectiveness as a measuring tool has been lampooned by a plethora of manufacturers with skin in the game.

Criticism of OEE as a performance measurement tool include its lack of ability to breakdown or access granular information in facilities and its lack of multi-dimensionality. The fact that it struggles with identifying real areas that require improvement within facilities is also a deterrent to its efficiency in analyzing factory performances. And this is where digital transformation comes into play.

Digital Transformation and its Ability to Enhance Facility Efficiency

The ability to digitize assets within manufacturing shop floors have created an environment where granular data can be collected from the deepest parts of today’s facilities. With the data collected due to digital transformation, a clearer picture of how a facility function can be gotten. But the digitization of traditional manufacturing processes and operations have also been a source of debate for diverse professionals due to certain difficulties. These difficulties include assessing data from legacy or dumb assets, managing communications across diverse supply chains, and bringing captured data together to make sense of complex facility operations.

To manage these challenges, diverse emerging technologies have been built around each of them. In terms of capturing data from legacy assets, the use of smart edge technologies that can be attached to assets is currently eliminating this challenge. While standards and communication protocols such as those from the OPC foundation is solving the issue of communication across both smart and dumb assets. Finally, to make sense from the captured data in order to enhance shop floor activities, digital twin technology provides a streamlined approach to monitoring and managing facilities using captured data.

With these emerging technologies, detailed insight at the granular level can be assessed about a particular facility. More importantly, these technologies attached to digital transformation can be used to enhance operational processes by delivering real-time scheduling, analyzing complex processes, and simulating applicable solutions to manufacturing shortcomings.

Discrete Event Simulation and Enhancing Facility Efficiency

Discrete event simulation (DES) tools such as Simio are some of the emerging technologies that play important roles in transforming traditional factory or facility processes. The introduction of DES can help with mapping out previous event schedules to create optimized scheduling templates that can speed up production processes.

DES tools or software can analyze both minor processes that are subsets of a large one, as well as, the entire complex system to produce schedules that optimize these processes. An example of this was the integration of Simio by Diamond-Head Associates, a steel tubing manufacturing company. The challenges the steel tubing manufacturer faced involved meeting production schedules due to a very complex production process with hundreds of production variables.

With the aid of Simio simulation software and the digital transformation it brings, Diamond-Head associates were able to utilize the large data sets produced by the varying production processes. With this simulation model, optimized schedules built for its manufacturing processes were created and this helped with making real-time businesses decisions. The steel tubing manufacturer successfully reduced the time it took to make a decision from an hour and a half to approximately 10 minutes.

This case study highlights how digital transformation can be used to enhance facility efficiency in diverse ways. These ways include optimizing scheduling procedures and drastically reducing the time needed to come up with accurate solutions to complex manufacturing-related scheduling processes.

Enhancing Facility Productivity with the Digital Twin

Another aspect of digital transformation is the use of digital twin technologies to develop digital representations of physical objects and processes. It is important to note that the digital twin does more than a 3D scanner which simply recreates physical objects into digital models. With the digital twin, complex systems can be represented in digital form including the capture of data produced by assets within the system.

The digital twin ecosystem can also be used to conduct simulations that drive machine and facility performance, real-time scheduling, and predictive analytical processes. Thus highlighting how digital transformation provides a basis for receiving business insights that change the leadership of an organization thinks and make decisions.

An example that highlights the application of digital twin technology to enhance productivity or facility efficiency is that of CKE Holdings Inc. CKE Holdings is the parent company of restaurants such as Hardee’s and Carl’s Jr. Earlier this year, the enterprise was interested in providing efficient shop floors or restaurant spaces for its employees to increase productivity levels, train new employees, and deliver better services to its customers. To achieve its aims, the organization turned to the digital twin and augmented reality to aid its business processes.

Once again, it is worth noting that both the digital twin and virtual reality tools are digital transformation tools. And with these tools, CKE Holdings Inc. succeeded in developing optimized restaurants with shop floor plans that played to the strength of its employees. The digital twin was also used to test and implement new products at a much faster rate than the traditional processes previously employed by the enterprise.

The end result was a user-friendly kitchen layout that delivered innovation in how CE Holdings restaurants function. The use of augmented reality also added another dimension to the training of new employees. The use of technology ensured new employees learnt through live practical involvement without any of the consequences attached to failure. This also reduced the hours experienced workers spent getting new employees up to speed within the restaurants. Thus highlighting another aspect in which digital transformation can be applied to drive facility efficiency levels.

The Benefits of Digital Transformation to Manufacturing and Production-Based Facilities

The examples outlined already spell out the benefits of digital transformation and its role in enhancing overall equipment and facility effectiveness levels. But, it is only right to compare and highlight what digital transformation brings to the table against the traditional OEE calculations still used within many shop floors.

  • A Complete Picture – Unlike OEE calculations which rely solely on manufacturing data produced from equipment and tools, digital transformation technologies can capture every aspect of the production process. This includes capturing data from the diverse algorithms, scheduling details, assets, sub-systems, and events that occur within the shop floor. This makes the level of details provided by digital twin environments superior to analyzing and enhancing facility productivity.
  • Improved Customer Strategy – Digital transformation enables the capture of data highlighting customer satisfaction with end products. This information can also be integrated into the manufacturing circle to ensure customers get nothing but the best service. This means with digital transformation the feedback of customers and employees can be used to enhance production facility processes.
  • Improved Employee Retention Strategy – The manufacturing industry is notorious for its high employee turnover rate due to diverse factors that make it unattractive to the new generation of workers. The integration of digital transformation can enhance workplace layout, as well as, bring a more modern and captivating process to manufacturing. These enhancements can reduce the turnover rate and get the younger generation interested in manufacturing.
  • Enabling Innovation – The increased adoption rate of industry 4.0 business concepts and models in manufacturing means businesses must adapt if they intend to retain their competitive edges. Digital transformation offers a pathway to innovating legacy business process and increasing an enterprise’s ability to stay competitive in a changing manufacturing industry.

The Next Steps

The advantages digital transformation brings to enhancing facility efficiency comes with a butterfly effect that affects leadership, innovation, and problem-solving activities. Although the integration process involves technical knowledge of applying digital twin technologies and simulation software, these skills can be acquired with a little effort.

Simio Fundamentals Course offer businesses and other organizations with the opportunity to train staffs about digital transformation and its specific techniques. You can also choose to register employees to participate in the upcoming Simio Sync Digital Transformation 2020 Conference to learn more about digitally transforming your business processes and how to reap the rewards.

How Do You Create a Digital Twin – 5 Things to Know

The Digital Twin is reminiscent of the early days of the personal computer in many ways. Initially, creating a digital twin required excessive computing power and multiple engineers working round the clock to develop digital representations of physical models. And just like the personal computer, technological advancement led to the creation of cloud-based digital twin solutions which made it possible for everyone to explore digital transformation and it is benefits.

Today, the digital twin market is expected to grow exponentially and this growth is being driven by the approximately 20 billion sensors and endpoints around the world. Advancements in IoT and IIoT have also played a role in increasing the adoption rate of digital twin technology which are some of the reasons why digital representations of almost any entity or process can be created today.

The benefits of the digital twin include the ability to make real-time decisions, receive insight from complex processes or systems, and plan better for the future. You can explore how digital twin can help your enterprise or individual pursuits by reading relevant case studies here. Now, to reap these benefits, a digital twin of a chosen process, object, facility, or system must be created which is what this post is all about. Thus, if you have ever wondered what it takes to develop a digital twin then bookmarking this is recommended.

5 Things You Should Know About Creating a Digital Twin

The task of creating a digital twin may sound daunting but like most activities diving in headfirst without overthinking simplifies the process. Once you have the required tools needed to create a digital twin, the supporting technologies such as Simio provides you with prompts and interactive information needed to complete the process. To successfully create a digital twin, here is what you need to know and the resources you need to have:

  1. Defining the System – The first step to creating a digital twin is defining the system, process or object to be digitized. To do this, an understanding of the entity is required and this can only be achieved through data capture. Thus, data defines the system to be digitized and introduced into the digital space.

The data capture process is generally fluid in nature and depends on the entity or system being considered. For manufacturing facilities, the data that defines a system or process can be gotten from assets within a facility these assets include original equipment, shop floor layouts, workstations, and IoT devices. Data from these assets are captured using smart edge devices, RFIDs, human-machine interfaces and other technologies that drive data collection.

With physical objects such as vehicles, data capture is done through sensors, actuators, controllers, and other smart edge devices within the system. 3D scanners can also be used to extract point clouds when digitizing small to medium-sized objects. The successful capture of the data a system or object produces defines the system and is the first step to creating a digital twin.

  • The Identity of Things – One of the benefits of a digital twin is the ability to automate processes and develop simulations that analyze how a system will operate under diverse constraints. This means the system or facility to be digitized must have its own unique identity which ensures its actions are autonomous when it is introduced into a system.

To achieve this, many digital twin platforms make use of decentralized identifiers which verify the digital identity of a self-sovereign object or facility. For example, when developing a digital twin of a facility, the entire system will have its own unique identity and assets within the facility are verified with unique identities to ensure their actions are autonomous when executing simulations within the digital twin environment.

  • An Intuitive Digital Twin Interface – Another important element or choice to make when creating a digital twin is selecting a technology or software that can help you achieve your goals. You must be clear about how the technology can help you achieve your goals of a digital twin. Some things you need to consider when choosing a digital twin software or platform include:
  • How the software handles the flow of data from the IoT devices or facility and other enterprise systems needed to understand and digitize the chosen process.
  • You need to understand how the software recreates physical objects or assets into its digital ecosystem. Some technologies support the use of 3D models and animations when recreating entities while others do not deliver that level of clarity.
  • When digitizing complex systems with hundreds of variables that produce large data sets, the computing resources needed to create and manage a digital twin is increased. This makes computing power and resources a key consideration when choosing a digital twin platform or solution. The best options are scalable digital twin technologies that leverage the cloud to deliver its services.
  • An intuitive digital twin solution also simplifies the process of creating digital representations of physical assets. The technology should also be able to understand the data produced across the life-cycle of an asset or at least integrate the tools that can manage the identity of assets within the digital twin.
  • Another key consideration is the functions you expect the digital twin to perform. If it is to serve as a monitoring tool for facilities or for predictive maintenance, a limited digital twin software can be used while for simulations and scheduling a more advanced technology will be required.
  • Start Small with Implementation – When taking on the implementation of digital twin technology, it is recommended you start small. This means monitoring the performance of simple components or a single IoT device within a system and expand with time. This hands-on approach is the best way to understand how the digital twin functions and how it can be used to manage larger systems according to your requirements.

With this knowledge, you can then choose to explore the more sophisticated aspects or functions the digital twin offers such as running complex discrete event simulations and scheduling tasks. A step by step approach to implementing or creating a digital twin provides more learning opportunities than initiating a rip and replace approach when developing one.

  • Understand the Security ConsiderationsAccording to Gartner, there will be 50 billion connected devices and 215 trillion stable IoT connections in 2020. As stated earlier the increased adoption rate of digital twin technology and the connected systems around the world bring up security challenges. These security considerations also affect the digital twin due to the constant transfer of data from the physical asset or process to the digital twin ecosystems.

When creating a digital twin, a plan must be in place to handle secure communication channels across networks and other vulnerabilities. To effectively do this, an understanding of the different communication protocols used within a system is required. This is why when choosing a digital twin technology, security challenges and how the platform mitigates risk must also be considered.

Creating a Digital Twin with Simio

Simio digital twin technology provides an extensive framework for creating digital twins of physical processes and facilities. The key considerations such as 3D representation, animation, scaling up functions, and simulation can be achieved within Simio’s environment.

If properly created, the digital twin can be used to drive data analytics initiatives, predictive maintenance, design layouts, and simulate diverse working scenarios. Thus, anyone or an enterprise can explore the benefits of the digital twin using Simio to create digital representations of complex systems or simpler ones. You can learn more about using Simio to create digital twin representations by registering for the Simio Fundamentals Course.

Simio Sync Digital Transformation Conference 2020

Get Inspired – Stay Forward Thinking!

Simio LLC is delighted to announce once again that the opportunity to learn more about the state of simulation and digital twin technologies is here. And yet again, this promises to be one of the biggest simulation and digital twin of the year. Simio Sync Digital Transformation Conference will focus on digital transformation technologies and how enterprises can tap into Simio to unleash the digital potential of business processes.

The event will be taking place on the 4th and 5th of May 2020 in Pittsburgh with advanced training about using Simio from the 6th to 8th of May. The first event will introduce you to Simio, the recent updates in Simio 12, and its application across industries. Keynote speeches and event programs will consist of Simio use cases and application across industries of interest. But before delving into the opportunities of the 2020 conference, here is a recap of 2019.

Simio Sync 2019 – A Recap

The 2019 Simio Sync conference was the third annual event on simulation and digital transformation built around Simio technologies and solutions. The event brought together an ensemble of experienced speakers to inspire the crowd on the role of simulation and digital transformation in the real-world. Speakers included; Chris Tonn from SPIRIT Aero systems, Ian Shillinger from Mckinsey & Company, Antonio Rodriguez from the National Institute of Health (NIH), and Dusan Sormaz from the University of OHIO among others.

Each speaker presented case studies highlighting the application of Simio within the aviation industry, manufacturing, healthcare, education, hospitality, and simulation engineering. These events proved inspiring to participants from varying industries and opened up new possibilities about applying Simio within their specific industries.

According to Jarred Thome, from USPS, his first Simio Sync event was an eye-opener in many ways. He said “This was my first year attending the conference and I was blown away by the extent to which the folks at Simio went to ensure it was a success. The content, presenters and networking opportunities were all top-notch and the Simio staff was always accessible and willing to chat. I will definitely be coming back.”

The 2019 event was one of a kind and next year’s event is expected to take things up a notch. The Simio Sync Digital Transformation Conference will consist of speakers from Fortune 500 companies willing to share their experiences with digital transformation using Simio with you. The event will also serve as a networking arena for stakeholders within the simulation and digital transformation community and participants.

All you need to know about the Simio Sync Digital Transformation Conference for 2020 will be highlighted here. In the meantime, you can sign up with Simio to receive conference updates and to register as a participant today.

Why Attend?

The fourth annual Simio Sync conference gives you the choice to learn, no matter the role you play in your company’s digitization efforts. At the end of the days, you will work away with the knowledge to help you and your company refine your digital transformation strategy to reap the rewards digitization brings.

If networking is your thing, how about coming to listen and catch up with individuals from fortune 500 companies among others. Through the years, Simio conferences have been fertile grounds for communicating and building relationships and this year’s event will be no different.

Simio Sync Digital Transformation provides an excellent opportunity to learn about simulation and its application in the real-world. Attending the event can help kick start your company’s digital transformation or refine transformation strategies to meet your defined goals. Thus, everyone is invited to attend, network, get inspired, and create fun memories while learning about digital transformation!

Code of Conduct

Simio Sync Digital Transformation conferences are safe spaces created for everyone interested in the digital twin, simulation, scheduling, and digitization. The event is open to everyone and the conference areas are safe, inviting, and supportive.

Simio representatives are also available in every location to ensure your participation is a memorable one. If you are in need of answers to Simio-related questions or event-related questions, you can reach out to a representative and your questions will be answered.

With the increasing number of participants, the golden rule of mutual understanding also applies. This will help you build better networks, and truly take advantage of the different sessions, and labs that are parts of the event.

Registration

Registration is now open. You can now take advantage of early bird tickets to become one of the first individuals or organizations to register for the Simio Sync Digital Transformation Conference for 2020. There are a plethora of excellent hotels and living areas around the event holding in Pittsburgh and the earlier you register, the quicker you will be about planning your travel and relaxation itinerary.

To register, visit the Simio Sync event page and go through the registration process. The process is quite straightforward and intuitive to accomplish. You will also have the choice of registering for the conference event and adding advanced training options to your registration form.

Session Catalog

The Simio Sync session catalog is the ultimate guide you need to navigate through the conference while bookmarking areas you are particularly interested in. The session catalog is currently live and you can browse through it while registering.

This year, there are approximately eight unique sessions divided across networking breaks to ensure you take advantage of your participation. The sessions include diverse keynote speeches from leading digital transformation experts and Simio engineers. To get a real-world feel of the application of Simio and digital transformation processes, case study sessions and presentations are also part of the event catalog.

Other exciting events of note which you are also welcome to participate in includes the Simio Pittsburgh exploration event where you and your spouse can line up with Simio Spouses to explore the ancient city of Pittsburgh. If you are a running enthusiast, you can also choose to participate with Simio in the Pittsburgh marathon before the conference begins. These are part of the fun activities lined up for you!

Advanced Training and Hands-on Labs

The advanced training event will take place on the 6th to the 8th of May. This training focuses on the application of Simio in the real-world. Thus, you will be introduced to the different features of Simio and how they can be applied to drive digital transformations, simplify discrete event scheduling, and build digital twins of physical processes.

The advanced training program will be a boon for organizations currently using Simio and others who are interested in using it to drive digital transformation strategies. Individuals interested in digital transformation are also welcome. The hands-on lab integrates the use of case studies and the Simio interface to ensure you understand every aspect of the digital transformation process with Simio.

Networking

Tens of industry-leading organizations and individuals have already reserved their spots for the Simio Sync Digital Transformation conference. And come the 4th of May 2020, you too can pick the brains of your favorite personalities within the aviation, hospitality, education, healthcare, automotive, automation, manufacturing, and pharmaceutical industries.

Participants from Lockheed Martin, Air Canada, Boeing, BAE Systems, OHIO University, United States Postal Services, Exxon Mobil, Roche, FedEx, Honeywell, American Airlines etc. will be there. The networking dinner and entertainment sessions at 6pm create an excellent opportunity to build interpersonal relationships for the future.

Conclusion

To get the best out of the Simio Sync Digital Transformation Conference, we recommend that you participate in at least one of the following programs:

  • Participate in at least one hands-on training covering the use of Simio.
  • Bookmark and participate in a keynote session highlighting the use of Simio for your industry or related industry
  • Wear comfortable shoes and cover grounds during the networking dinner and entertainment opportunities within the conference.
  • Talk with others and explore Pittsburgh!

Top Trends in Simulation and Digital Twins Technology for 2020

Digital Twins refers to the digital representations of people, processes, and things. It is used to analyze operations and receive insight into complex processes. As 2019 comes to an end, the need to define digital twin technology still exists and hopefully by this time next year, its growth and popularity will make this need obsolete…

In 2018, digital twins were included as a top technology trend by the big names covering the tech industry. According to Orbis research, the digital twin market is expected to grow by 35% within a 5-year time frame and 2020 is right in the middle of this period. But before highlighting the trends to expect in 2020, it is only right to do a recap of the year so far. This is to note if earlier predictions have come to pass before mapping the future.

In terms of popularity, coverage of the digital twins is definitely on the right track as continuous studies by Gartner and other publications show. Today, many professionals across the technical and non-technical divide understand the digital twin concept and how it can be used to drive business processes and concepts. This is why many industries are currently integrating digital twins to bolster business insight and understand data.

The biggest adopters of digital twin technology in the geographical sense remains North America. Enterprises within the US and Canada currently leads the way in terms of adopting digital twin technology. North America accounts for approximately 59% of the digital twin market and economy while Europe and the Asian pacific comes next.

The very nature of the digital twin and simulation, as well as, the solutions they provide makes them attractive business tools for the manufacturing industry and this fact is backed up by data. The manufacturing industry’s affinity to digital twins is powered by Industry 4.0 and the varied ongoing processes that occur within shop floors. The use of smart edge devices, equipment, robots, AI, and automation also fits nicely into the digital twin concept thus making it attractive to manufacturers.

In 2019, manufacturers account for approximately 36% of the digital twin market. Other industries such as the energy and power industry, Aerospace, Automobile and Oil & Gas complete the top five industries who make use of the digital twin to enhance operations. Analyzing this trend highlights the fact that digital twins are important to simplifying complex processes where hundreds or thousands of variables and relationships are needed to successfully accomplish set tasks.

Is the Digital Twin for Only Production-based Industries?

Although the Oil & Gas industry, as well as, the energy and power sector are not tagged as manufacturing industries, a case can be made for it. Therefore, many may assume or wonder if digital twin technology is only useful within production-based industries where discrete or process manufacturing takes place. And the answer is No.

The digital twin is also being used in other industry verticals such as the hospitality industry and in restaurants. One example is the use of Simio by CKE Holdings Inc. to ease workloads in its Carl’s Jr and Hardee’s restaurants. The Digital twin is also being used to support discrete event simulations in hotels, real-estate, and tolling facilities.

The use of interconnected devices and automation within service and hospitality businesses are the driving forces behind the adoption of digital twin within a variety of industries. And the coming year is expected to witness continuous growth as more industries and professionals understand what the digital twin brings to the table.

Top 5 Trends for the Digital Twins and Simulation Technology for 2020

Interrelated Technologies will Boost Adoption Rate – The growth and maturity of interrelated technologies such as 3D printing, metal printing, and mapping will play a part in accelerating the adoption rate of digital twins in 2020. This is because of the need to monitor and consistently improve these technologies and the systems that drive them.

Using 3D printing as an example, many manufacturing outfits are currently making use of 3D printing clusters to speed up their production requirements. 3D printing clusters or farms refers to facilities where hundreds of 3D printers function simultaneously to manufacture physical items. Although these 3D printing clusters have dedicated software for managing the printing process, material delivery, scheduling, and managing the entire supply chain within these facilities are handled manually.

Digital twin solutions can eliminate the manual management and handling process in 3D printing farms to great effect. If properly executed, a digital twin of a large scale 3D printing cluster will provide a data-driven approach to optimize supply, scheduling and the manufacturing process. This will reduce expenditure including the energy expended in 3D printing cluster facilities.

Industry 4.0 will Continue to Drive Adoption – The growth in Industry 4.0 and the devices, as well as, communication channels driving the smart factory is expected to increase the adoption of digital twin solutions. In 2019, Industry 4.0 witnessed the creation of new standards from the OPC Foundation that supports the collection of data from the deepest corners of brownfield facilities. These data were collected from dumb equipment with legacy technologies using smart edge and embedded devices.

The success of this approach, means that digital twin technology can now integrate the data collected from dumb or legacy equipment when developing digital representations. This increases the accuracy levels of the representations thereby enhancing simulation results and scheduling plans. Thus, increasingly accurate digital twin ecosystems and results will create more use cases that will drive the adoption of digital twins in 2020.

IoT and IIoT to Drive Digital Twin Adoption Rate – The move to more interconnected environments across both manufacturing and service-based industries also have roles to play in 2020. As stated earlier, Industry 4.0 will enhance the adoption of digital twin technologies and this also true for the industrial internet of things (IIoT). The widespread adoption of IoT and IIoT devices or equipment have created a race to develop the best management solution to monitor interconnected activities.

This creates an avenue which digital twin service providers are currently taking advantage of and will continue to do so in 2020. The ability of the digital twin to create digital representations of IIoT devices and also integrate the data they produce creates multiple use cases enterprises will explore in the coming years. These use cases include running simulations in complex interconnected facilities to produce accurate results or to access processes that involve the use of IIoT technologies.

Digital Twin for Cybersecurity Challenges – With every passing decade, the cybersecurity challenges enterprises face keeps changing. The millennium brought Trojan horses and other viruses which were effectively stopped with anti-virus software apps and by 2010, attackers pivoted to using phishing attacks and malware. Today, ransomware, spyware, DDoS, and business email compromise attacks have become the new challenges enterprises face. Thus highlighting the ever-changing landscape of cyber threats.

To cater to these threats and attacks, digital twin solutions will be enlisted by enterprises in 2020. In this scenario, the digital twin will be used as a penetration testing tool to simulate the effects of successful data breaches or ransomware to an organizations business processes. Within the digital twin environment, attacks to core equipment can be simulated and the result will be a response pattern that ensures the crippled equipment does not lead to extended downtime.

2020 will also be expected to witness an increase in the cybersecurity threats facing cloud-based digital twin solutions. Thus, more secure communication protocols and standards regulating data use will be developed to protect enterprises making use of digital twin technology. This means developers and service providers will have an increased role to play in securing digital twin environments.

Simulation-based Scheduling – The drive to deliver real-time scheduling is expected to continue in 2020 as enterprises seek more accuracy with managing business process. The need for real-time scheduling is also driven by how enterprises intend to apply simulation and digital twin tools. An example includes the need to make business decisions in real-time, handle unforeseen occurrences such as machine downtime, and reschedule operations.

These challenges fall into the category of issues discrete event simulation (DES) software can handle. Once the required data is accessible, DES and digital twin applications can conduct simulations in real-time and provide accurate solutions to dealing with changing scenarios also in real-time. This will drastically reduce downtime and enhance performance within facilities and warehouses.

Although some DES software offers real-time simulation scheduling, many are still process-based scheduling applications and this is set to change in 2020.

Quantum Computing – If real-time simulation, scheduling, and process management is to be achieved, then digital twin solutions must take advantage of the speed, scalability, and high-performance quantum computing offers. Today, digital twin solutions currently leverage the cloud to provide stable and scalable services to enterprises and only a few integrate the use of high-performing computers to enhance or manage really large workloads.

In 2020, further strides will be made to speed up simulations within digital twin environments using high-performing computers. The success of this initiative will speed up real-time scheduling and complex process management for the foreseeable future.

Planning for 2020…

The benefits of the digital twin have played an important role in ensuring its adoption across diverse industries and the expected trends of 2020 will continue the increased adoption rate that came with 2019. Although digital twin solutions have become more interactive and intuitive to use, enterprises still require the assistance of experienced professionals to get the best out of their digital twin environment and this is where Simio can help.

IT managers, cybersecurity experts, and project managers can take advantage of the Simio Fundamentals Course to learn more about simulation and Digital Twin technology including its application in real-life scenarios.

Evolution of Discrete Event Simulation Software

Today, discrete event simulation (DES) software and the benefits it provides are currently being used across a majority of industries to simplify business operations, make predictions, and gain insight into complex processes. But before modern simulation software such as Simio could be used to create shiny models and execute real-time simulations, there were earlier technologies that formed the foundation built upon by modern simulation software. As you can probably tell, there is definitely a story behind the evolution of simulation software and today, that story is being told.

To accurately tell this story, the evolution must be arranged in chronological order. The traditional order currently in use today is the order outlined by R.E. Nance in 1995. This chronological order will be used here but with slight edits to accommodate the earliest memories of simulation software and the current strides being made. This is because the most referenced order outlined in 1995, did not take into account the efforts of Jon von Neumann and Stanislaw Ulam who made use of simulation to analyze the behavior of neutrons in 1946.

RE. Nance’s chronology which was written in 1995 could not and did not account for the recent paradigm shifts in DES software. This understandable omission will also be highlighted and included in this post. Therefore, this paper on discrete event simulation should be seen as an update of the history and evolution of DES software.

The Early Years (1930 – 1950)

Before discrete simulation came to prominence, early mathematicians made use of deterministic statistical sampling to estimate uncertainties and model complex processes. This process was time-consuming and error-prone which led to the early DES techniques known as Monte Carlo simulations. The earliest simulation was the Buffon needle technique which was used by Georges-Louis Leclerc, Compte de Buffon to estimate the value of Pi by dropping needles on a floor made of parallel equidistant strips. Although this method was successful, simulation software as we know it got its origin in 1946.

Sometime in the fall of 46’, two mathematicians were faced with the problem of understanding the behavioral pattern of neutrons. To understand how neutrons behaved, Jon von Neumann and Stanislaw Ulam, developed the Roulette wheel technique to handle discrete event simulations. The light bulb moment came to Ulam while playing a game of Solitaire. Ulam successfully simulated the number of times he could win at Solitaire by studying hundreds of successful plays.

After successfully estimating a few games, he realized it would take years to manually observe and pick successful games for every hand. This realization led to Ulam enlisting Jon von Neumann to build a program to simulate multiple hands of solitaire on the Electronic Numerical Integrator and Computer (ENIAC). And the first simulation software was written.

The Period of Search (1955 – 1960)

The success of both mathematicians in simulating neutron behavioral patterns placed the spot light on simulation and encouraged government agencies to explore its uses in the military. As with all technological processes, the growth of discrete simulation software could only match the computing units available at that time. At that time, analog and barely digital computers were the springing board for development.

Around 1952, John McLeod and a couple of his buddies in the Naval Air Missile Test Center undertook the responsibility of defining simulation concepts and the development of algorithms and routines to facilitate the design of standardized simulation software. In the background, John Backus and his team were also developing a high-level language for computers. The efforts of the multiple teams working independently of one another led to the development of the first simulation language and software that would lead to the evolution of DES software.

It also highlights the general theme of how technological advancements and software evolutions occur which is through advancements in diverse interrelated fields.

The Advent (1960 – 1965)

By 1961, John Backus and his team at IBM had successfully developed FORTRAN, the first high-level programming language for everyday use. The success of FORTRAN led to the creation of a general-purpose simulation language based on FORTRAN. This language was SIMSCRIPT which was successfully implemented in 1962 by Harry Markowitz.

Other general-purpose simulation software and systems also sprang up within this period as competing contractors continued to develop simulation languages and systems. At the tail end of 1965, programs and packages such as ALGOL, General Purpose Simulation System (GPSS), and General Activity Simulation Program (GASP) had been developed. IBM computers and the BUNCH crew consisting of Burroughs, UNIVAC, NCR, Control Data Corporation, and Honeywell were developing more powerful computers to handle complex simulations.

One of the highlights of this period was the successful design of the Gordon Simulator by IBM. The Gordon Simulator was used by the Federal Aviation Administration to distribute weather information to stakeholders in the aviation industry. Thus highlighting the first time simulation was used in the aviation industry.

Here again, the increase in processing speed and the prominent entry of a new term known as computer-aided design was to play a role in advancing the development of simulation software for use. At this stage, early simulation packages and languages were still being used predominantly by the government, as well as, a few corporations. Also, ease of use, intuitive, and responsive packages were slowly being integrated into simulation software such as the GPSS which had become popular in the 60s’.

The Formative Years (1966 – 1970)

The formative years were defined by the development of simulation software for commercial use. By this time, businesses had begun to understand simulation and the role it plays in simplifying business process and solving complex problems. The success of systems such as the Gordon Simulator also got industry actors interested in the diverse ways DES software could be employed.

Recognizing the need to apply simulation in industrial processes, the first organization solely dedicated to simulation was formed in 1967 and the first conference was held in New York at the Hotel Roosevelt. In the second conference, 78 papers on discrete event simulation and developing DES software were submitted. Surprisingly some of the questions asked in the 1968 conference still remain relevant to this day. These questions include:

  • The difficulties in convincing top management about simulation software
  • How simulation can be applied in manufacturing, transportation, human behavior, urban systems etc.

The Expansion Period (1971 – 1978)

 The expansion period was dedicated to the simplification of modeling process when using simulation software and introducing its use in classrooms. At this stage, diverse industries had begun to understand the use and benefits of simulation software to their respective industries. This, in turn, led to discussing the need to prepare students for a world that integrates simulation.

Also, advancement in technology such as the introduction and wide spread use of the personal computer made the case for developing simulation software for dedicated operating systems. This led to the development of the GPSS/H for IBM mainframes and personal computers. The GPSS/H also introduced interactive debugging to the simulation process and made the process approximately 20 times faster than previous simulation packages. In terms of technological evolution, the GASP IV also introduced the use of time events during simulations which highlights the growth in simulation software available to industries at that time.

By the fifth simulation conference tagged the ‘Winter Simulation Conference’ of 1971, diverse tutorials on using simulation packages such as the GASP2 and SIMSCRIPT had become available to the public. The growing popularity of simulation also led to increased commercial opportunities and by 1978, simulation software could be purchased for less than $50,000.

The Consolidation and Regeneration (1979 – 1986)

The consolidation age was defined by the rise of the desktop and personal computer which led to the widespread development of simulation software for the personal computer. Simulation software also witnessed upgrades through the development of simulation language for alternative modeling (SLAM). The SLAM concept made it possible to combine diverse modeling capabilities and obtain multiple modeling perspectives when handling complex processes.

These upgrades or development made simulation for production planning possible and the manufacturing industry began to take a keen interest in simulation software. The increase in computing and storage capacity also led to the creation of factory management systems such as the CAM – I. CAM – I effectively became the first simulation software used solely for closed-loop control of activities and process within shop floors.

By 1983, SLAM II had been developed and this was an industrial-grade simulation package ahead of its time. SLAM II provided three different modelling approaches which could also be combined at need. These approaches included discrete event modeling approach, network modeling, and the ability to integrate discrete modeling and network modeling in a particular simulation model. More importantly, SLAM II cost approximately $900 which was relatively cheap at that time. This can be signified as the moment where discrete event simulation came into its own as commercial software options for discrete event simulation modeling became available to the general public

The Growth and Animation Phase (1987 – 2000)

The 90s’ witnessed a consolidation of the strides made in the earlier years and many interrelated technologies and processes also came off age within this decade. This era focused on simplicity, the development of interactive user-interfaces, and making simulation available for everyone including non-technical individuals.

In the mid-nineties, simulation software was being used to solve even more complex issues such as simulating every event and process in large-scale facilities. The Universal Data System example was a first in those days. Universal Data System was stuck with converting its entire plant to a hybrid flow-shop which enhanced production. To achieve this, the company made use of GPSS and the end result was a successful flow that enhanced daily operations and the entire process was modeled and simulated within 30 days.

In 1998, vendors began to add data collection features to simulation software. These features included the automation of data collection processes, the use of 3D graphics and animation to make the simulation process more user-friendly and non-technical. Needless to say, the technological advancements in animation, modeling, graphics design, and UI building played roles in enhancing simulation software during this period.

The Flexibility and Scalability Phase (2000 – 2019…)

Finally, we come to the last evolutionary phase of the DES software as we know it. Once again, advancement in interrelated technologies have made scaling simulation and speeding up its process possible. The evolution that came with the new millennium saw DES vendors leverage the use of cloud computing, AI, and high-performance computing to take simulation to greater heights.

Other changes that came within these decades was the evolution of production-based scheduling process to a simulation-based scheduling process. This shift allowed for real-time simulation scheduling, processing, and decision-making. This shift also comes with the fourth industrial revolutions were data collection, automation, and interconnectivity rule. Simulation software of this generation has evolved to become tools capable of digitization and the development of digital twins.

Discrete event simulation software such as Simio are examples of the comprehensive simulation technologies that are needed to drive Industry 4.0. This is because new age DES software must be able to collect and store its own data, model accurate 3-D graphics, animation, manage real-time scheduling, and digitization. They must also be equipped with features that market it possible to leverage cloud computing, integrate enterprise resource planning applications, and high-performance computing. These features all work together to ensure the most complex simulations are executed to deliver accurate answers or insights when applied in professional settings.

Summary

The future of discrete event simulation is by no means set in stone as the experiences from previous eras have shown. This means with the advancement in interrelated technologies and simulation software, more industrial concepts and business models will be disrupted in the coming decade. 

Simio Showcases the Digital Twin at INFORMS Annual Meeting 2019 – A Recap

The INFORMS Annual Meeting for 2019 has come and gone with multiple keynotes shared, workshop activities, and hundreds of excellent companies sharing their experiences and solutions from brightly colored booths. Once again, Simio was at the thick of things evangelizing the benefits of simulation and Digital Twin technology to the world. As with all annual meetings, the focus was on the strides been made in operational research and analytics. And the meeting provided the chance to explore emerging technologies and its applications across all ‘works of life’.

The term ‘all works of life’ wasn’t used lightly as sessions covering social media analytics and e-learning to applying analytics to human trafficking were explored. As for Simio, our role was somewhere in the middle and as stated earlier, our participation was centered around the digital twin. But before going into details of how the event panned out and Simio’s roles, here is an outline of what the INFORMS Annual Meeting is about for interested individuals.

INFORMS Annual Meeting

INFORMS which stands for the Institute for Operations Research and the Management Sciences is an umbrella organization for professionals plying their trade in operations research and analytics. INFORMS currently boasts of approximately 12,500 members across the globe which highlights its global or international reach.

The organization also sets standards and guidelines to ensure research and analytics within its field are ethically done. To bring its thousands of members together under one roof, the INFORMS Annual Meeting event was created and it holds once a year. The event features keynote sessions, workshops, publication presentations, and an exhibition area for member and enterprises to showcase their wares.

The INFORMS Annual Meeting also coincides with its community service drive to assist non-profit organizations with meeting their obligations. This is done through the INFORMS Pro Bono Analytics section of the organization. If you are wondering why the information about Pro Bono Analytics is included here, then I ask for patience as it will all make sense in the end.

Now to the annual meeting of 2019!

The 2019 INFORMS Annual Meeting was a 3-day event which ran from the 20th of October to the 23rd. This year’s event was definitely a success as more than 5,000 people breezed through the different sessions, exhibition areas, workshops, and lunch areas throughout the 3-day event. The convention center buzzed with activities through these days and we are proud to say Simio capitalized on these activities in different ways. Our participation included a dedicated Simio booth highlighting the use of Simio digital twin technology, a session handled by Jason, and workshop presentations from Renee.

Keynote Sessions and Workshops of Note at the INFORMS Annual Meeting

Tens of session covering operations research and analytics were covered throughout the event which makes mentioning and discussing every one of them impossible. So, the focus will be on simulation, digital transformation, cloud computing, and digital twin sessions.

One of the exciting sessions within the above category was the session about the computational infrastructure for operations research, COIN-OR, initiative. The IBM project focuses on providing open-source technologies solely for computational operations research. The end goal is to provide an open-source library of tools which will ensure researches do not have to start from scratch when handling complex research. This creates a foundation that will be built on and maintained by researchers over the years.

The session ‘Robust Optimization and Learning Under Uncertainty’ was also interesting as it discussed the challenges stakeholders face with decision-making and policy creation. Han Yu, a PhD student at the University of California spoke about how important data collection, and an understanding of history should drive real-world decision-making. The session also discussed how modeling and robust optimization techniques can enhance the decision-making process.

Other notable sessions highlighted or raised questions about the role digital twin and simulation could play in enhancing agriculture and the healthcare industry. According to Greg from Syngenta, AI, computer vision, and bioINFORMSatics modelling currently assist Syngenta with making data-driven seed selections and breeding. This raises the question of the role of the digital twin in agriculture which may be explored in other blog posts.

In the ‘Healthcare Modeling and Optimization’ session, Dr. Zlatana Nenova spoke about the role modeling and data analytics play in improving healthcare. Her speech also touched on the use of digital technology to analyze medical care policies for both off and on-site healthcare delivery. In terms of on-site healthcare, there are certainly diverse ways the healthcare industry can benefit from digital twin technology. Although this was not covered in this year’s event, it highlights the possibilities of applying digital twin to the healthcare industry.

Simio’s Events at the INFORMS Annual Meeting

Now, to Simio and our role at the INFORMS conference. In last year’s event, Ms. Renee Thiesing, the VP of Strategic Alliances,  spoke excellently on the role Simio plays in driven discrete event simulation and the digital transformation of brownfield systems as the move to Industry 4.0 continues. She also highlighted the importance of real-time event scheduling and how Simio can help enterprises solve real-time scheduling challenges using Simio.

In this year’s event, Ms. Renee built on her earlier foundation by focusing on the digital twin capabilities of Simio and its application in diverse industries. Her session titled ‘New Innovations: Cloud Computing, Real-Time Scheduling, Industry 4.0 and more’ discussed how Simio leverages cloud computing to deliver high-performing scheduling and simulations.

Through the session, she discussed how Simio leverages the computing power of Microsoft Azure to support complex applications. Simio’s compatibility with Schneider Electric’s Wonderware was also discussed in detail. This includes the leveraging of Wonderware to achieve detailed production scheduling in real-time, as well as, manage real-time risk analysis. The new Simio features such as Simio’s cloud portal and OptQuest were also covered during her workshop. She highlighted OptQuest abilities to optimize scheduling and simulation with the aim of delivering optimal solutions to complex business problems.

Jason Ceresoli also spoke on the benefits of using Simio’s 3D modelling capabilities to solve real—world problems. His presentation covered Simio’s features for system design and operation. Practical examples of how Simio’s rapid 3D modeling, planning and scheduling, and optimization capabilities can be used by enterprises were also discussed by Jason. Finally, his session highlighted the difference between Simio and other simulation tools with a focus on how professional researchers and analysts can use these features. 

Our participation at the INFORMS Annual Meeting will not be complete without recounting our experiences at booth 28 in the exhibition area. The targeted message used in the Simio booth drew its own audience of professionals, entrepreneurs and business representatives interested in the digital twin. This gave us the opportunity to showcase Simio’s features and real-world applications to interested individuals. We can categorically say our booth played a role in the sales leads and opportunities we got from the event.

Simio and the Pro Bono Analytics Event

I remember introducing you to the INFORMS Pro Bono Analytics and now here we are! This year, Pro Bono Analytics partnered with a Seattle-based non-profit organization, FareStart, to assist individuals interested in building careers in food service and culinary arts. At this year’s INFORMS Annual Meeting, Simio alongside other participants made donations to the FareStart initiative.

The event was a success and according to Elise Tinseth, Community Engagement Manager with FareStart, shared, “The INFORMS Pro Bono micro-volunteer opportunity of creating hygiene kits is impactful to eliminating barriers our students who are experience poverty and homelessness have to getting jobs in the food service industry.’ She also thanked everyone who made out time and donated resources to help FareStart meet its goals.

INFORMS Annual Meeting Awards and the Future

And lastly, the INFORMS Annual Meeting Awards. Although Simio did not bag any of the awards, the pomp and pageantry, as well as, the strides made by researchers are worthy of a mention in this post. Hopefully, the prize for teaching operations research and management science may be ours. That being said, the 2019 event was a success and Simio will continue to be a part of the INFORMS Annual meeting for the foreseeable future.

Simio Training and Certification – Introducing Simio Fundamentals

Learn from Simulation Experts, Advance Your Skills and Knowledge.

Organizations across every industry need individuals with simulation, modelling, and digital transformation skills to help transform their business processes. Simio Fundamentals will help you learn, relearn, and validate your simulation and modelling abilities with this introductory course. Simio Fundamentals is an online course which consists of 14 modules. Each module was designed and created by simulation experts including Dr Jeffery Smith, a professional with decades of experience in teaching and solving simulation-related problems.

The 14 modules that make up the Simio Fundamentals training are all video instructions consisting of practical information that eases you into the technical aspects of simulation, animation, and modeling. Although the course is focused on Simio’s simulation software, the knowledge and skillset to be gained can be applied in other simulation ecosystems. This is why interested students, educators, employers, and employees should view this course as one that covers the fundamentals of simulation.

Is the Simio Fundamentals Course for You?

The course was designed for Simio customers and students across the globe who currently use Simio simulation software and digital twin solutions for learning and simulating business processes. Individuals within this category can up their skills and accomplish more with Simio by taking advantage of the information and practical solutions in the fourteen modules.

Simulation, modeling, and digital twin solutions are currently being employed across diverse industries to monitor and manage complex processes, as well as, implement new business concepts. Thus, system integrators, project managers, data analyst, and engineers can also take advantage of the information in this course. Simo Fundamentals offer you, regardless of your experience with simulation, the opportunity to re-learn simulation from scratch and an entry point to mastering digital twin technologies.

Employees can also take advantage of the certification opportunity that comes with completing the Simio Fundamental course and the certification process that comes with it. A Simio Fundamental Certification will highlight your abilities in simulation and modeling tasks. The certification will also highlight your ability to apply simulation processes in solving complex business operational challenges and real-world problems. Employers can also take advantage of this opportunity to teach staff about the basics of simulation and train them on its application within a facility. This ensures everyone is on the same page and understand the integration of simulation technology into business processes.

How Important Is Simio Fundamentals to Your Industry?

Simulation and its interrelated fields such as scheduling, digital twin, and process control are used across every industrial niche where business operations take place. This means regardless of your industry, some knowledge of simulation and its processes will be helpful to an individual’s career and business growth. 

In the tech or IT industry, simulation is widely used to test and explore different business processes, implement new strategies, and analyze prototypes. The Simio Fundamentals course include modules that cover modeling and animation which are important for testing new ideas, hardware designs, and IoT devices to note how they will function in the real world. This is where knowledge in simulation and taking advantage of the Simio Fundamentals course comes into play.

In education, Simio simulation software is currently being used in 800 universities across the globe to teach students about STEM-related concepts. This includes modeling and animation which are staples of engineering and computer science. Educators and students can now learn the fundamentals of simulation and working with Simio by studying the modules in this course.

In banking and finance, simulation is being used to design check out points to deliver enhanced customer services to clients. Simulation and modelling can also be used to organize the layout of banking halls to optimize productivity within a workforce. Managers, stakeholders, and decision-makers can take advantage of this course to learn about simulation and its ability to gain business insights from the banking and finance industry.

Taking a look at manufacturing, simulation plays an important role in streamlining manufacturing process including production, material handling, and the varying relationships that go on in today’s shop floors. The rise of industry 4.0 has also created an avenue were simulation thrives. With knowledge of simulation, manufacturers can implement new strategies and industry 4.0 business concepts in facilities. Simulation also provides the opportunity to explore concepts of generative design for complex systems and products.

Like the manufacturing industry, production-based industries such as in Oil & Gas, mining, and the pharmaceutical industry, simulation also has an important role to play. Knowledge of simulation can be applied to enhancing material handling processes, digitizing shop floors, and determining time dependencies and other related modeling tasks. The facility management and hospitality industry can also take advantage of simulation to implement new processes and monitor the diverse ongoing systems within a facility. The Simio Fundamentals course provide the foundation needed to apply simulation and modelling techniques in these industries.

Gaining an understanding of Simio through the Simio Fundamentals Course gives you the knowledge needed to apply simulation in your industry however you choose. This includes solving real-world problems, educating students, and implementing new business concepts.

Introducing Simio Fundamentals

Simio Fundamentals is a course offered by Simio University and it covers the fundamental of simulation and Simio. The course is made up of 14 modules which include the following subject matters:

  1. An Introduction to Simulation – This introduces simulation and defines its application and impact.
  2. Introduction to Simio & Success Tips – This provides an overview of Simio, its interface, and simulation tools.
  3. Introduction to Animation – This introduces basic animation concepts and the use of animations in Simio.
  4. Simio Modelling Framework – This introduces Simio’ modelling framework, interfaces, and commands.
  5. Simio Standard Library Fixed Objects – This module includes workshops that introduce the resources available to you when using Simio.
  6. Balking and Reneging – A workshop that focuses on balking and reneging.
  7. Task Sequences – This introduces the basics of task sequencing and an introduction to materials.
  8. Controlling Movement
  9. Material Handling – This introduces the use of Simio to simulate material handling and the basics of manual and automated material handling.
  10. Working with Model Data – This introduces the management of data tables and scheduling with Simio.
  11. Process Logic – This module is an introduction to processes and its related concepts.
  12. Debugging Tools and Techniques – This introduces the debugging techniques available with Simio.
  13. Optimizing with OptQuest
  14. Building Custom Object Definitions – This introduces you to Simio’s object libraries and how to make use of them.

Each module was designed by simulation experts and Simio professionals who have acquired real-world experience with applying simulation in diverse situations for decades. The modules are in video form and each module runs for 35 to 90 minutes depending on the topic. Simio Fundamentals modules are designed in such a way that you can complete the entire course within two weeks. The modules also consist of 23 workshops that provide you with the opportunity to get hands-on with simulation with Simio. Educators can also make use of these workshops as teaching tools for students.

It is also important to note that this course is licensed for and per individual use. Thus, educators who intend to use it in their classrooms can contact us to learn more about how we can help. Subscribing to the course gives you access to the videos and workshops in every module. This means you can pace the learning process to fit your schedule. If you would like continuous access to the course, you can choose the licensing option that makes this possible.

Next Steps…

The benefits of having an understanding of simulation and its application in the real world are varied for students and individuals. These benefits include:

  • Providing prospective employees with an entry point into industries that deal with simulation.
  • Helping students to learn about simulation with Simio and prepare them for the challenges in today’s workspaces.
  • Receiving business insights from simulated models of real-world processes.
  • Acquiring a Simio certificate that proves you understand simulation and its applications.

Simio Training and Certification – Introducing Simio FundamentalsThese benefits are why over 800 universities and hundreds of enterprises make use of simulation and Simio simulation solutions to solve complex challenges. Get started with Simio and simulation today by registering for the Simio Fundamentals course.

Integrating Simulation and Digital Twin Technology in the Hospitality Industry

The numbers are in and they do look good for the hospitality industry which consists of hotels, restaurants, and other hospitality-related services. According to Forbes, profitability in the hospitality industry is finally on the increase after the slump of previous years. The report further stated that the net profit margins for full-service restaurants grew by approximately 6% which is 3.8% more than the previous year. The National Restaurant Association expects this growth to continue but early wins must also be consolidated if this is to be achieved. And this is where Digital Twin Technology comes into play.

With the expected growth figures also comes challenges and in the hospitality industry, these challenges generally include fending off the competition and enhancing operations to reap increased rewards. In terms of competition in the hospitality industry, the following statistics paint a clearer picture. In 2018, approximately 60,000 new restaurants and lounges were opened in the United States while 50,000 either filed in for chapter 11 or were closed down for other reasons. Although at the end of the year, the industry grew with the addition of 10,000 restaurants, this mass closure still highlights the competitive nature of the industry.

The competitiveness in the hospitality industry is turning many small and large scale stakeholders to turn to emerging technologies to ease operational deficiencies. This is why today, the hospitality industry has become one of the major drivers of innovation in robotics, artificial intelligence, digital visualization, and the internet of things (IoT). The aim is to collect data from every aspect of a hotel or restaurants operational chain and use that data to receive the business insights needed to stay ahead of the competition.

Today, most hotels make use of interconnected devices to simply customer requests and analyze their peculiarities in order to deliver bespoke services. Examples of this include the use of concierge robots by the Hilton group and the design of smart hotels by Marriot and other stakeholders.

And to what benefits?

Integrating digital technology in the hospitality industry has led to a 40% increase in revenue for online travel agencies (OTAs) who streamline and personalize their services for customers. In brick and mortar hospitality facilities like the Marriot hotels, its financial report of 2018, highlighted a 38 percent increase in revenue with emerging technologies playing a starring role in simplifying operations. This led Arne Sorenson, CEO of Marriot, to state that ‘digital transformation is not only speeding up every aspect of our business, but it is also broadening operations’. And this transformation, as well as, the benefits they bring can be broadened much further with the integration of Digital Twin technology.

What is A Digital Twin?

A digital twin refers to virtual representations of physical products, systems, facilities and the processes that occur in them. The technology can be used to create digital replicas of actual physical assets and processes and also integrate potential assets onto the created virtual environment. This means every asset that functions in a shop floor including devices or equipment and all business operation or process can be recreated in a digital environment.

Digital twin environments also create an enabling environment for testing new business policies, operations, and assets to access their performance levels before any physical implementation is undertaken. When put beside the recent adoption of smart technology in the hospitality industry, it is easy to see why digital twin technology is the solution every stakeholder has been waiting for to broaden business operations.

One of the major features of the digital twin is its ability to virtualize every asset and process that occurs in an environment. In the hospitality industry, these assets may include; the smart devices used in rooms, check-in and check-out points, robots, the equipment used for logistics and supply chain management, inventories, and every process that produces data. This means when correctly deployed, a digital twin can recreate assets and processes from the deepest parts of a hospitality system in a digital ecosystem.

The Digital Twin and Enhancing the Hospitality Industry

The easiest way to understand how digital twin technologies can be leveraged to gain an edge over the stiff competition in the hospitality industry is through case studies and CKE Restaurants Holdings, Inc. provides an example.

CKE Restaurants Holdings, Inc. digital twin Story is one that showcases how harnessing digital twin technology and virtual reality can be used to test and implement new operational policies within the hospitality industry. In its case, CKE recreated hundreds of assets and kitchen configurations using the digital twin with the aim of deciding the best configuration that will increase productivity in its Carl’s Jr and Hardee’s restaurants. With the aid of Simio’s digital twin solutions, restaurant floors and kitchens were digitized which provided the perfect environment for reorganizing shop floor assets to reduce employee traffic and create an enabling environment for customers.

To achieve the level of detail needed to accomplish this task, CKE had mapped out every production aspect that occurs within a restaurant down to the plate cleaning process. With this data, accurate simulations could be executed which yielded highly-accurate results. Thus, integrating new equipment and testing how they function with other variables and assets within the restaurant was made possible. This meant receiving accurate business insight into new policies and the effects of introducing new assets before effecting a physical implementation.

According to Forbes, the integration of Simio’s digital twin helped CKE Restaurants, Holding, Inc. manage hundreds of simulations that consisted of the introduction of diverse assets and processes into the digital model. This allowed the restaurant to predict the effects of introducing approximately ten new equipment to the shop floor, as well as, test the efficiency levels of five layouts for the kitchen. The use of a digital twin also helped analyze new designs that would assist CKE with easing the workload on employees which would lead to higher employee retention in an industry notorious for low retention rates.

The example of CKE Holdings, Inc. still leaves the question of if the digital twin can enhance operations in larger more complex facilities. The short answer to this is, definitely yes!

Digital twin technologies have been made use of in large industrial settings such as Nestlé’s and Boeing facilities to implement new ideas and enhance production. Although these examples highlight the importance of digital twin technology, the focus is on the hospitality industry which leads to the longer answer.

In the large hotels with 300 rooms and above, more operational processes occur that dwarf the example highlighted in the CKE case study. These processes include; logistics and supply chain management, tracking the orchestration of hundreds of customers, power consumption, and correctly assigning workplace assets to meet demand. Other smaller systems within a large hotel’s immediate environment are the valet and parking system, concierge system, and manual workflows.

As stated earlier, digital twin solutions are capable of recreating diverse assets, processes and system in a virtual environment when correctly applied. This actually makes the digital twin a solution custom-built for large hotels where the need to keep track of multiple processes within a system while implementing new ideas is a regular occurrence. With the aid of the digital twin, every data produced in large facilities can be collected and analyzed against the different assets within the system. This gives the system integrator or manager a contextual insight into every aspect of running a hotel facility in real-time.

Furthermore, the digital twin of large hotel facilities can be used to run both discrete and continuous event simulations to better understand the events occurring in different systems. A discrete event simulation can be used to test how the implementation of building of an additional check-out point at the parking lot will ease driving and foot traffic before a physical implementation is considered. Also, a simulation of the power consumption that occurs within the facilities can provide insight into which assets or processes can be periodically shutdown to reduce consumption.

The benefits of Adopting Digital Twin in the Hospitality Industry

 Although the earlier case studies provide an insight into the benefits of the digital twin to the hospitality industry, more information is sometimes needed when making decisions. In this case, the decision to be made is choosing to enhance operations using digital twin solutions.

One of the important benefits of integrating a digital twin is the clarity of purpose it provides to facility managers and hotel owners. The use of a digital twin means decisions no longer has to be made in the dark. An accurate digital twin built with every asset, process, and data coming from a hotel or restaurant is the perfect environment for testing out anything before implementation. The test can be as extensive as analyzing the effects of a new equipment transportation system or how automating a business process will turn out. The test can also be as little as analyzing how changes in shelf heights will increase employee productivity.

Another important challenge hospitality businesses face involves the reduction of operational expenses without having to reduce the quality of services offered. Here again, the insight a digital twin provides can be helpful with reducing waste. An example of this is the use of the digital twin by KONE, an elevator company. KONE makes use of digital twin technology to understand how people move through buildings and the decisions they take when riding an elevator. The knowledge gotten from the use of a digital twin helped the company cut out three to four minutes from the average elevator commute. This, in turn, reduced maintenance cost and increased productivity for building owners.

KONE’s case study highlights the fact that hotel owners can make use of the digital twin and scheduling software to analyze commutes, reception traffic, kitchen and dry cleaning process with the aim of increasing workforce productivity. The model can also be used to enhance customer experience by reducing commute from the reception floor to hotel rooms. As for restaurants, this can be taken further to simplify the drive-through process and increase worker efficiency thereby eliminating waste.

The journey to a smarter hospitality industry also provides the perfect environment for enhancing productivity and providing seamless experiences for customers. Embedded devices and IoT solutions can be used to map out customer attractions and the areas that witness more customer traffic. With this information, simulations run through the digital twin can create optimized schedules for visitation periods. This will ensure that customers do not wait in long queues before being able to access areas of attraction within a facility.

Carving a Niche in the Competitive Hospitality Industry

 Staying afloat in the hospitality industry in order to reap a part of its staggering $550billion revenue requires some effort. These efforts consist of creating an efficient system that takes care of every need of the customer. With advancements in technology, the task of creating that system has become more streamlined and visible to business owners. The digital twin offers visibility and the ability to access real-time information before designing or recreating efficient systems.

CKE Restaurant Holdings, Inc.’s use of Simio’s digital twin solutions provides an excellent case study that highlights how important digital twin is to the transformation of the hospitality industry. With these solutions business owners can better access both small and large scale operational process and enhance these process to the benefit of your customers. You can learn more about the competitive edge the digital twin offers your hospitality and restaurant facilities by speaking to a Simio representative today.

Resources:

https://www.google.com/url?sa=t&source=web&rct=j&url=https://marriott.gcs-web.com/static-files/b82978a6-9d28-4e38-9855-fc4ae2cebe11&ved=2ahUKEwjH8YGxjKPlAhWNTsAKHesCC3EQFjAOegQIBxAB&usg=AOvVaw1wOGkSQxcJ8O7VZBmYm1xF

https://www.nextguestdigital.com/blog/hospitality-digital-tech/

https://www.simio.com/applications/industry-40/Digital-Twin.php

https://www-forbes-com.cdn.ampproject.org/c/s/www.forbes.com/sites/lanabandoim/2019/09/25/how-cke-restaurants-is-using-virtual-reality-to-innovate/amp/

https://www.google.com/url?sa=t&source=web&rct=j&url=https://inbuildingtech.com/uncategorized/digital-twins-proptech/&ved=2ahUKEwi6ieSMjaPlAhWMXsAKHYvxC94QFjACegQIAhAB&usg=AOvVaw2JkDmpLHU5Vs0BI4inPD4n

Analyzing the Paradigm Shift from Production Scheduling to Simulation-Based Scheduling

Through the long centuries of man’s existence, man has always produced materials and products for specific uses. But at the turn of the 17th century, something interesting happened. Man had built industrial equipment for the first time which ushered in the age of industrialization. This age came with larger facilities dedicated to every aspect of the production lifecycle as we know it today. With these large facilities came the need to manage hundreds of workers, the transportation of materials, and the stages of production for a product. And as early as the 1800s, the need for production scheduling methodologies was apparent.

This need led to the development of scientific management processes by legendary figures such as Henry Gantt. In the 1800s, charts and manual data collection techniques were introduced to manage production scheduling challenges. Although these solutions worked perfectly with the industrial equipment and facilities of that age, advancements in production technology made them redundant by early 1900s.

Moving forward to the 80s, production scheduling was being defined as the process of planning to ensure the raw materials and production capacity within a facility are optimally allocated to meet demand. With time, this definition was updated to account for complex tradeoffs between competing priorities and the hundreds of varying relationships that occur on manufacturing shop floors.

To handle these complex trade-offs and production variables, advanced planning and production scheduling systems where developed. These systems or solutions were fondly called APS solutions and they accounted for the materials available for a production cycle, available labor and production capacity. APS systems successfully handled the scheduling of complex production processes by applying a constraint-based approach to scheduling. Thus, these tools created schedules for:

  • Capital-intensive production process where constraints such as equipment and plant capacity where constraints to deal with
  • Production processes where hundreds of components needed to be assembled when building the product.
  • Production processes with changing schedules which were not predicted at the beginning of the process.

The success of production scheduling systems also led to the creation of hundreds of enterprises offering APS solutions and services to ease complex scheduling activities. Other spin-off solutions such as customer relationship management applications and enterprise resource planning solution were also developed due to the success of production scheduling systems.

As with most great technological advancements, the traditional product scheduling solutions began to meet more complex situations than it could handle due to the changing manufacturing landscape. These changes are both technological and conceptual in nature. In terms of technology, the advent of Industrial Internet of Things, smart manufacturing equipment, and automation were changes traditional scheduling software could not deal with. While the conceptual changes include the need to account for all data produced on the shop floor, make predictive analysis, manage disruptions in real-time, and cybersecurity challenges among others. These changes limited the efficiency of production scheduling software in diverse ways which will be further explored.

The Limitations of Production Scheduling Solutions

The limitations of production scheduling tools are all due to the increased complexity of today’s manufacturing and industrial facilities, as well as, the demand for more insight by enterprises. These limitations include:

Flexibility Challenges

The ever-changing processes in modern manufacturing facilities and the introduction of new equipment and process to the shop floor must be integrated into a functional scheduling system. The ability of traditional production scheduling tools to adapt to these changes is limited which means the schedule they produced will be skewed.

Challenges Integrating Real-Time Occurrences

The effects of downtime in manufacturing and industrial facilities have been highlighted in hundreds of reports. Downtime can be caused by a variety of issues but for the topic of production scheduling, a machine going down in a shop floor is the perfect scenario. Production scheduling tools will struggle to predict this event or even take it into account to reschedule events in real-time.

Although production scheduling tools can create schedules that take into consideration defective equipment, they make use of approximated data. This means the schedule they produce are static in nature and would not take into consideration real-time data such as the location of the machine, output at its workstation etc.

Requires Numerous Adjustments

This constraint is a follow up to the challenges production scheduling tools have with integrating real-time occurrences. To prevent trashing the systems integrator must create multiple custom algorithms for different scenarios. This means the product scheduling tool takes these algorithms and try to apply them to a new problem within a facility. To accomplish it multiple adjustments must be made to the initial adjustment which defeats the ability to create reschedule in real-time. According to Oracle, this challenge means the traditional product scheduling tools will struggle with finding good solutions to scheduling problems even when they exist.

With these limitations, a new process to accurately manage production scheduling tasks was needed. This led to the paradigm shift from traditional production scheduling solutions to simulation-based scheduling. Simulation-based scheduling involves the imitation of the operation of a real-world process over time using a digital model. The process involves building a simulation model of the physical process and populating the model with the detailed events and processes that occur in the real-world. The simulation model can then be run to produce an optimized production schedule.

The Impact of Simulation-Based Scheduling

It is important to note that simulation-based scheduling can be handled in two ways. These are through a discrete event simulation and a continuous simulation process. The discrete event simulation models the operation of a manufacturing or industrial facility as a discrete sequence of events that occur with time. In this model, events occur at a particular instant in time and record the change of state in the facility.

On the other hand, continuous simulation models continuously track the events and the changes they produce in the facility. Both the discrete event simulation and continuous simulation model take production scheduling to heights traditional production scheduling tools cannot reach. This paradigm shift has made real-time production scheduling more accurate and flexible enough to deal with the changes that occur in modern facilities.

As stated earlier, the introduction of production scheduling tools led to the development of other complementary technology solutions and this is also the case for simulation-based scheduling. One such concept is simulation-based Digital Twin solutions. The Digital Twin involves the mirroring of physical objects to create a virtual model through simulation-based engineering tools.

The ability to create Digital Twins of every facility and industrial process also takes simulation-based scheduling to new heights. Creating virtual mirrors of real-time systems or facilities and simulate the complex process that occurs in these facilities to create a far more accurate schedule than traditional production scheduling tools.

In the case off dealing with downtime, simulation-based digital twin environments can collect data from real-world sensors and use the data to predict asset –manufacturing equipment—behavior. This allows for the scheduling process to account for defective equipment and quickly reschedule the production process around the defective equipment. Also, simulation-based scheduling tools can manage what-if scenarios better than the alternative. Making it possible for operations teams to simulate possible challenges and create optimized schedules that take these constraints into consideration.

An example of how simulation-based scheduling alongside digital twin technology has been used to develop more efficient schedules. Is in the case of CKE Restaurants. Here, a Digital Twin of the restaurant facilities made it possible to create implementation schedules, supply and delivery schedules in its kitchen facilities. The end result was a more efficient production and service process driven by simulation-based scheduling and Digital Twin solutions.

How Simulation-Based Scheduling Transverses through Diverse Industries

Traditional production scheduling tools were designed and developed primarily for use in manufacturing settings and this still remains its key area of application. Unlike production scheduling, simulation-based scheduling can be integrated into any industrial process to produce accurate schedules.

Once again, its affinity with Digital Twin technology makes this possible. This is because, with digital twin technology, every process and asset in an industrial setting can be modeled and brought into a digital environment. The integration of simulation-based software in this digital environment can then simulate the industrial process and create schedules for them. Simulation-based scheduling can be used in the healthcare industry, pharmaceutical facilities, dockyards, ports, and in every facility where a process can be modeled and mapped.

The rise of Industry 4.0 manufacturing facilities and processes where data is king provides another avenue for simulation-based scheduling to prosper. Smart factories are being run by machines and devices with sensors, embedded systems, and system on modules solutions. This makes it possible to assess data from every asset and process in a facility.

Simulation-based scheduling software can leverage the data collected in an Industry 4.0 – compliant facilities to create real-time schedules. Computing simulations of schedules can also be achieved in real-time with increased accuracy due to the widespread availability of data in facilities that integrate Industry 4.0.

Simulation-Based Scheduling and the Road Ahead

The paradigm shifts from production scheduling solutions to simulation-based scheduling is still very much an on-going journey. This is due to emerging technologies which complement and enhance the use of simulation-based scheduling software. Examples include the rise of cloud-computing and high-performing computers (HPCs). These technologies make it possible to create models of very complex systems such as facilities or processes with thousands of variables while producing accurate scheduled for them.

The combination of these technological process will enhance real-time scheduling and rescheduling as we know it. As simulation-based schedule software leverage on the cloud and HPCs, complex simulations can be done in micro-seconds thereby delivering accurate real-time results that enhance productivity in industries. Thus completing the paradigm shift from manual and constraint-based scheduling to a responsive real-time scheduling era.

How to Sell the Idea of Digital Twin to Your Manager

The business world as we know it is changing. Never have there been so many emerging technologies, models, and business concepts competing for the attention of the business community. Today, we have cloud computing services, the Internet of Things, Artificial Intelligence, Robotics, Automation, Blockchains, and the Digital Twin providing timely business insights for enterprises. This is why the internet and even physical business entities have hundreds of salesmen and women trooping in and out of your private space. Selling the ‘next best thing’ in technology like pharmaceuticals marketers do, to CTOs, CIOs, and other decision-makers.

 In this whirlwind of changing activities and millions of ads advertising the best technology solutions is Digital Twin technology. For those who know the benefits of the Digital Twin and its ability to enhance every aspect of an enterprise’s operation, the challenge of convincing management to take a chance with it remains. This leaves one with the question of what are the best techniques to sell the idea of integrating Digital Twin technology to the boss? As with most sales challenges, the traditional answer generally involves listing its value-added propositions and outlining the returns to be made investing in the technology.

Although the traditional answer to selling new ideas to management remains efficient, the increased competition among cutting edge tech services means more selling points are needed. Thus, to effectively answer the question ‘how do I sell the idea of Digital Twin technology to management’, here are some new and timely tips to consider.

5 Tips for Selling the Idea of Integrating Digital Twin Technology to Decision-makers

As a sales representative, business development, or system integrator staff/employee who is part of a team, the successful introduction of new technology solutions depends on your approach. This is because you will serve as the driving force behind ensuring the implementation of Digital Twin technology improves the company’s operational processes to deliver optimal services to customers. The tips for selling the idea of Digital Twin Technology include:

Making Your Case with Data – The task of convincing those who control the money and decide what investments are to be made is not for the faint-hearted. You must come prepared and one of the ways to prepare for every question that may come your way is having the required data in place that answers the most important questions. According to a Mckinsey report, integrating data analytics in the right place or in your sales pitch is one way to convince skeptics on the importance of Digital Twin technology. The data to be included must be relevant to the situation or scenario you intend to create when selling Digital Twin Technology. To simplify your search for adequate information, here are some of the data you will need:

  • To answer the question of the adoption rate and how the competition intends to use Digital Twin technology to enhance business operations, the IDC data on adoption can help. The IDC forecasts that 40% of IoT platform vendors and 70% of manufacturers will be making use of Digital Twin technology by 2022.
  • If the question of how digital twin technology can help increase the revenue of the business, data from the Juniper Research can help you answer the question. According to the research, the use of Digital Twin technology has helped enterprises increase their revenue by 25 to 35%. This is due to the ease in which business insights can be gotten from complex processes and the predictive analytical features of Digital Twin technologies.

Armed with this information, your sale pitch will highlight the importance of staying ahead of the competition by integrating Digital Twin technology to simplify complex processes and difficult business decisions. It can also be applied to drive development and predict future scenarios in a wide variety of industries including manufacturing, architecture, construction, technology, engineering, and healthcare industries.

Make Use of Case Study – With your data in place, the next step to convincing decision-makers in your organization is through the provision of confirmable case studies on how Digital Twin technology can help. This is where a little personal effort comes into play if interested in creating personalized case studies for stakeholders to scrutinize. You can find applicable case studies that highlight how Digital Twin technology has been applied and is still been applied by your competitors here:

  • You can find case studies on the application of Digital Twin technology in the aviation industry, automotive industry, manufacturing, healthcare, mining, and engineering at Simio’s resource center. The case studies here are practical examples that can be integrated into your presentation when making your sales pitch.
  • If you are certain a pitch with case studies may not be enough, then more effort is needed from your end. This effort involves the design of a Digital Twin of a phase of your facilities operations to showcase the benefits of a digital model of physical systems where events can be simulated. Many Digital Twin technology providers offer free trials which can be used to accomplish this task. You can make a request for a Simio Demo to quickly kick start the process of designing a Digital Twin.
  • Provide specific answers to your enterprise or the enterprise’s pain points. Once again, although case studies may be customized to show how Digital Twin technology alleviate business challenges, creating a functional model will do more to pass the message across.

So, the second tip here is making use of case studies to address exactly how Digital Twin technology can be used to eliminate specific challenges an enterprise experiences. The efficient use of case studies is one of the quickest ways to get the ball rolling when trying to sell Digital Twin solutions to the decision-makers in your organization.  

Showcase the ROI – It is a well-known fact that one of the most publicized benefits of Digital Twin technology is the returns it offers enterprises who choose to invest in it. Also, your manager, as well as, stakeholders would definitely expect a breakdown of how much the investment will cost and the returns to expect. It is important to have this in mind because, finances are generally the deciding factor that determines if a positive decision will be made.

According to research by High Tech Software Cluster, the threshold for integrating Digital Twin technology for enterprises costs approximately €50, 000 ($55,000). The study goes on to show that to create digital twin solutions for more complex systems may cost approximately €150, 000 or $165,000. As stated earlier, the returns on this investment can be as much as 35% of the total cost needed to create a Digital Twin. In some cases, returns of approximately 50% have also been reported which highlights the financial leverage Digital Twin technology offers enterprises.

As you probably know, approximations are not enough to sway managers and other decision-makers. This means more exact figures that showcase the total cost of owning a Digital Twin of complex process is needed to successfully sell the idea to management. Calculating the total cost of ownership can be done using an estimate calculator. The estimate calculator is capable of calculating the cost of purchasing the necessary hardware, software packages, energy costs, and other costs associated with owning Digital Twin technologies.

It is also important to highlight any supporting technologies that will be needed for data collection if an accurate Digital Twin is to be developed. These technologies may include embedded systems in manufacturing equipment, IoT devices, cloud computing services to scale simulations, and augmented reality devices. These complementary technologies and services may also add to the bottom line of designing a functional Digital Twin environment of complex systems. Thus, using the estimate calculator to highlight the ROI of creating a Digital Twin is one of the major steps that must be taken to convince management about the need for a Digital Twin.

Ask the Right Questions – During strategy sessions, some push backs are expected and this will definitely be the case when selling the idea of a Digital Twin to enhance business operations. This push back should be expected even after using data to answer questions, creating case studies or applicable scenarios, and defining the return on the investment made. When the expected push back occurs, the best way to understand how management thinks and the challenges they foresee is by asking questions. Asking the right questions provides you with the foundation needed to provide the answers needed to convert non-believers into believers.

The questions to ask are varied and should be determined by the level of skepticism shown by particular decision-makers. Some of the questions you must ask to assess the mindset of your superiors include:

  • Do you need more information to make a decision and what information do you need? The purpose of asking this question is to have an idea about what your audience or manager is thinking. Remember that IT managers are notoriously skeptical about new technology therefore, having an understanding of the prejudices management has against Digital Twin technology is important.
  • I know you love the way things are going, but would you be interested in a 6-month trial? If the feedback you get from the manager and decision-makers is negative due to their satisfaction with how things are within the company, this question might help break the ice. Satisfaction with the present condition of things can dampen the enthusiasm for Digital Twin technology. But pushing for a trial could be the turning point that turns ‘no’ into a ‘yes’.
  • If it helps you surpass your personal targets will you try it? It may come as a surprise to you that managers think more about self-preservation than the success of a business. This is one reason why your manager may be resistant to change. Thus, making your questions a bit personal and putting the manager’s self-interest first may be the strategy that gets him/her to experiment with Digital Twin technology.

These questions should be asked without sounding too pushy to your manager and other decision-makers. This is because a pushy attitude could be interpreted as a desperate attempt to make some money for yourself on the side.

Associate the Integration of Digital Twin with Achieving Business Goals – Finally, the ace in your back pocket should be tying the integration of Digital Twin technology to the ideology of the enterprise. This includes highlighting how Digital Twin can be used to realize the business’s mission statement or meet certain key performance index (KPIs). With the answers to the questions asked above, accomplishing this task should be a bit easier than the first steps of selling the idea to management.

Your ability to showcase the benefits of Digital Twin technology and how it meets your company’s culture or KPIs is determined by your knowledge about the transformative powers of the technology. To accomplish this, a lot of research is needed to know more about how this emerging technology can be applied to your business case. Once again, you can turn to the information highlighted in these tips to refine your pitch to resell the idea of integrating Digital Twin technology to your manager. For more information, you can also choose to attend conferences centered around the adoption of Digital Twin technology in your industry.

The Benefits of Digital Twin Technologies is Worth the Extra Effort

Digital Twin technologies create value in diverse ways that can ease the effort expended doing your job. Some of the more important benefits include:

  • Descriptive Values – The ability to visualize the status of an asset in real-time via its Digital Twin is valuable when those assets or facilities are either remote, complex, or dangerous. In plants and other facilities, a Digital Twin makes information easily accessible for interpretation and to make business decisions.
  • Diagnostic and Standardization Value – In facilities where hundreds of variables are involved with production, Digital Twin technology can be used to stabilize these variables, pinpoint the root cause of problems, and leverage analytics to standardize complex systems.
  • Predictive Value – Industry-leading enterprises like General Electric have used Digital Twin technologies to improve efficiency and the output of plants. This was accomplished using a Digital Twin to propose solutions that can lead to customer satisfaction and profitability.

You can learn more about getting started with Digital Twin technology in your facilities, plants, and business by speaking to a Simio engineer today.