Simulation Stakeholder Bill of Rights

The people who request, pay for, consume, or are affected by a simulation project and its results are often referred to as its stakeholders. For any simulation project the stakeholders should have reasonable expectations from the people actually doing the work.

Here I propose some basic stakeholder rights that should be assured.

1. Partnership – The modeler will do more than provide information on request. The modeler will assume some ownership of helping stakeholders determine the right problems and identify and evaluate proposed solutions.
2. Functional Specification – A specification will be created at the beginning of the project to help define clear project objectives, deadlines, data, responsibilities, reporting needs, and other project aspects. This specification will be used as a guide throughout the project, especially when tradeoffs must be considered.
3. Prototype – All but the simplest projects will have a prototype to help stakeholders and the modeler communicate and visualize the project scope, approach, and outcomes. The prototype is often done as part of the functional specification.
4. Level of Detail – The model will be created at an appropriate level of detail to address the stated objectives. Too much or too little detail could lead to an incomplete, misunderstood, or even useless model.
5. Phased Approach – The project will be divided into phases and the interim results should be shared with stakeholders. This allows problems in approach, detail, data, timeliness, or other areas to be discovered and addressed early and reduces the chance of an unfortunate surprise at the end of a project.
6. Timeliness – If a decision-making date has been clearly identified, usable results will be provided by that date. If project completion has been delayed, regardless of reason or fault, the model will be re-scoped so that the existing work can provide value and contribute to effective decision-making.
7. Agility – Modeling is a discovery process and often new directions will evolve over the course of the project. While observing the limitations of level of detail, timeliness, and other aspects of the functional specification, a modeler will attempt to adjust project direction appropriately to meet evolving needs.
8. Validated and Verified – The modeler will certify that the model conforms to the design in the functional specification and that the model appropriately represents the actual operation. If there is inadequate time for accuracy, there is inadequate time for the modeling effort.
9. Animation – Every model deserves at least simple animation to aid in verification and communication with stakeholders.
10. Clear Accurate Results – The project results will be summarized and expressed in a form and terminology useful to stakeholders. Since simulation results are an estimate, proper analysis will be done so that the stakeholders are informed of the accuracy of the results.
11. Documentation – The model will be adequately documented both internally and externally to support both immediate objectives and long term model viability.
12. Integrity – The results and recommendations are based only on facts and analysis and are not influenced by politics, effort, or other inappropriate factors.

Note that every set of rights comes with responsibilities. The associated stakeholder responsibilities are discussed as part of the Simulationist Bill of Rights.

Give these expectations careful consideration to improve the effectiveness and success of your next project.

Dave Sturrock
VP Products – Simio LLC

Why Simulation is Important in a Tough Economy

Everyone wants to cut costs. No one wants to spend unnecessarily. When budgets are tight, software and software projects are an easy place to cut. Staff positions like Industrial Engineers are sometimes easier to cut or redeploy than production jobs. I suggest that following this reasoning to eliminate simulation projects is often short-sighted and may end up costing much more than it saves. Here are a few reasons why it may make sense to increase your simulation work now.

1) Minimize your spending. Cash is tight. You cannot afford to waste a single dollar. But how do you really know what is a good investment? Simulate to ensure that you really need what you are purchasing. A frequent result of simulations intended to justify purchases is to find that the purchases are NOT justified and in fact the objectives can be met using existing equipment better. A simulation may save hundreds of times its cost with immediate payback.

2) Optimize use of what you have. Could you use a reduction in cost? Would it be useful to improve customer satisfaction? I assume that your answer would always be yes, but even more so in difficult times. But how can you get better, particularly with minimal investment? Simulation is a proven way to find bottlenecks and identify often low-cost opportunities to improve your operation.

3) Control change. In a down economy you are often using your facilities in new and creative ways – perhaps running lean or producing products in new ways or in new places. But how do you know these new and creative endeavors will actually work? How do you know they will not cost you even more than you save? Simulation helps you discover hidden interactions that can cause big problems. Different is not always better. Simulate first to avoid costly mistakes.

4) Retain/improve your talent pool. Some people who might otherwise be laid off may have the skills to be part of a simulation SWAT team. By letting them participate in simulation projects, they will likely achieve enough cost reduction and productivity improvements that they more than pay for themselves. As an added bonus, the team will learn much about your systems, the people, and communication – knowledge which will improve their value and contributions long after the project is complete.

5) Reduce risk. You are often forced to make changes. How do you know they are the right changes? Will a little more, a little less, or a different approach yield better results? How do you measure? A strength of simulation is its ability to objectively assess various approaches and configurations. Substitute objective criteria for a “best guess”, and, in turn, reduce the risk associated with those changes. In a down economy it is more important than ever that you don’t make mistakes.

In summary, rather than thinking of the cost of simulation, you should think of what the investment in simulation today will save you today, tomorrow and every day following. Simulation is not a cost, it is an investment that may return one of the best ROIs available in a tough economy.

Dave Sturrock
VP Products – Simio LLC

Simulation and Strategic Management

Guest article from Marco Ribeiro

Corporations everywhere today face the huge challenge of surviving and growing in an extremely competitive environment. Markets are shaped and reshaped due to constant innovation, customer demands and fierce competition. All these forces demand that corporations continuously reinvent themselves trying to maintain competitive advantages that differentiate them from the competition.

Strategic planning in such an environment is a difficult challenge that corporations must overcome successfully. Corporate strategic planning deals with such complex issues as:

    * Understanding the market and its future trends – understand suppliers, competition, their competitive advantages and market positioning. Know the future trends that will shape the market.
    * Future resource allocation – how the corporation’s resources should be organized in order to maintain an efficient operation.
    * Scope of operations -in which businesses should the corporation operate, which ones should be dropped out
    * Diversification of the corporation’s business – should the corporation focus its operations in a small and related set of businesses or should it look to diversify to heterogeneous businesses
    * Future structure of the company – draw the boundaries of the corporation and determine how these boundaries will affect relationships with suppliers and customers

The strategy defined will address all these issues in detail and determine the future direction of the corporation.

Can we use simulation to support the strategic planning process?
Yes, we can. As Thomas Davenport and Jeanne Harris describe in their book: Competing on Analytics: The new Science of Winning, we will see an increasing demand and use of analytical technologies supporting corporation’s decision-making processes.

Simulation can play an important role by helping managers create models of their markets and processes and “toy” with them in order to get a deeper understanding. We can also use simulation to support such efforts as portfolio analysis and management, helping managers determine how to most effectively manage and configure their product life cycle. We can build models of processes and determine the most efficient configuration. Simulation is a valuable tool to test scenarios and make better business decisions.

Marco Ribeiro
LinkedIn Profile

Simulation in Healthcare

Over the years, I have had several occasions to use medical facilities for myself and my family. Some visits were routine, such as for a diagnostic tests or images. Others were for much more critical visits to an emergency department. As my visits spanned many facilities and many time periods, I observed a dramatic difference in the service provided. In the case of bad service I just had to wonder “Didn’t anyone ever study this operation? Did anyone ever simulate it?”

Simulation can bring significant benefits to healthcare, just as it does in other types of systems. Some of those benefits come from the simulation’s ability to:
• Account for variability in human behavior
• Account for variability in demand
• Capture complexities and interdependencies
• Capture system performance over a period of time
• Support continuous process improvement and evaluation of new scenarios
• Provide an objective basis for evaluating policies and strategies

Here are a few possible applications to illustrate how simulation is often used in the healthcare industry:

New Facility Design – Evaluate design to assure that present and future objectives will be met. Reduce capital costs by “running” the facility under various scenarios and identifying excess capacity . Reduce operating costs by supporting lean and six sigma analyses. Increase throughput through process flow optimization and identification of bottlenecks and capacity constraints.

Emergency Department (ED) – Decrease LOS (Length of Stay) and LWBS (Leave Without Being Seen) yielding higher patient satisfaction. Improve staff efficiency and improve room and resource utilization resulting in lower costs.

Outpatient Lab and Surgery – Determine optimal staff and resource allocation. Balance scheduled demand with the often-critical unscheduled demand. Decrease lab and diagnostic turn-around time. Identify non-value-added and redundant processes.

Ambulance Service – Evaluate operational scenarios for both road and air-based vehicles. Evaluate new technology to determine their effect on the entire system. Pre-plan dynamic utilization-based response guidelines to optimize performance during major ED demand periods.

Vaccine Distribution – Evaluate regional material stocking strategies, distribution strategies, and staffing.

Often the benefits from these studies are reported in the millions of dollars so they are well worth the undertaking.

One source of additional information is the Society for Simulation in Healthcare which is having their annual conference in January. Another source is the Society for Health Systems which offers the latest in process analytics, tools, techniques and methodologies for performance improvement.

Dave Sturrock
VP Products – Simio LLC

Simulation and Disaster Management

While the last couple months have been pretty dry where I live here in the Northeastern part of the U.S., in the Southeastern part several severe hurricanes have already hit and it looks like more are coming. While every severe storm can have serious consequences, often the major difference between a severe storm and an outright disaster is the level of preparation.

Of course weather is just one of many potential causes of disasters. We have all seen floods, fires, earthquakes, and other disasters around the world that have been made much worse through inadequate planning and poor execution. Simulation can play a major role in preparing communities to avoid or at least reduce the impact of such disasters.

More accurate weather prediction is due in part to simulation. Combining advanced detection technology with sophisticated simulations has allowed us to become much better at predicting storm paths and severity. This allows for improved warnings and appropriate responses.

Simulation use in evacuation planning has a very high potential, but is not used as much as it could be. Communities should be able to examine various scenarios and evaluate the best ways to move people to safety, well before a dangerous situation actually occurs.

First-responder rescue efforts can also be pre-planned and evaluated. Where should various types of equipment be stored? How can it be moved? Who will staff it? What procedures should be used for various types of disasters?

As for relief scenarios, they too could be planned ahead of time with the assistance of simulation. What equipment and supplies should be stockpiled and where? How can it be quickly relocated? Who will staff it? The logistics of a large scale disaster-relief effort, including health care provisions, security at all levels, and even communications, (all of which often involve multi-organization coordination) is a great opportunity to showcase the true benefits of using simulation.

Large corporations and other organizations can also do their own simulation-based planning. Contingency plans for various scenarios can minimize the impact of a local or regional event and help ensure that a single event does not cripple the entire organization.

Louisiana State University has a relatively new center for disaster management and has organized a conference November 16-18 dealing with some of these issues.

Be Prepared” is a motto that anyone planning for a disaster should live by; Simulation helps make that a bit easier.

Dave Sturrock
VP Products – Simio LLC

Keep Simulation Simple

I mentioned a while back that I am a Boy Scout. OK, maybe my boyhood days are long gone, but I still consider myself to be a Scout. I learned many lessons as a Scout; lessons that continue to serve me well today. One of those is KIS or Keep It Simple.

I remember learning primitive camping skills. Many novice campers would bring too much gear, requiring hauling and storing it, and just in general complicating camp life. The simple (KIS) approach is to bring only what you absolutely need. Many novice campers would also select poor camp sites and then spend time dealing with dampness, bugs, discomfort, safety issues and more. The simple approach is to avoid those issues by selecting a good camp site. Then in both cases, you spend all that saved time enjoying the camp and doing what you came to do. KIS pays off.

KIS applies equally well to many aspects of simulation. When things go wrong, it can often be traced back to too much complexity.

  • How many people are subjected to overly complex management procedures?
  • Are the procedures used for planning and tracking your work making the most effective use of everyone’s time?
  • Is every aspect of your work done effectively?
  • The basic concept of KIS is to do just enough to do it well and no more! Does this mean you should not do your best? No. But it does mean that you should segment your work into small phases and KIS on each phase.

    In model-building for example, let’s say a stakeholder expresses desire for a detailed model for the 10 areas of his system. One common approach is to go off and create exactly what the stakeholder asked for. Unfortunately, this will probably be wrong. A better approach is to pick one representative area, and do a very high-level model of that one area. Then review that model and results with the stakeholder. In most cases, you will both learn a lot and you may jointly decide on a different approach. Then perhaps do a detailed model of that same area or perhaps extend that high-level model to a few more areas. Again you will probably learn something that will change your approach or objectives. For each phase, you want to do the simplest thing (KIS) that will meet the objectives for that phase. In this way, you will minimize any wasted effort and come much more quickly to exactly what the stakeholder needs.

    Let’s consider model-building at a much more detailed level. A common mistake by novices is to build a large section of a model (perhaps even an entire system) all at once. And then you hit “Go” and it does not work. Why doesn’t it work? There are perhaps a thousand possible reasons to investigate. Even worse, there are most likely dozens of small or large problems, each potentially obscuring the others. Verifying and validating such a model is a daunting task. A much better approach is to start by selecting a very small (KIS) portion of the model to build and verify that it works. Then repeat. When a problem is discovered in any new section, it is generally easy to find it because you know it is a result of that latest section just added. Again, “Keep It Simple”.

    Remember, Keep It Simple. Work effectively and exceed your stakeholder expectations one simple step at a time.

    Dave Sturrock
    VP Products – Simio LLC

    Missing the Date – Arriving Late to the Party

    How many times have you shown up late to an event? Perhaps something came up at the last minute. Perhaps you encountered road construction. Or maybe you just failed to think ahead. Sometimes it all works out. But sometimes you miss something important – like your sister’s wedding vows or your child’s big performance.

    In an earlier article, we talked about the importance of project planning and management. Although there are many aspects to success, let’s concentrate on the completion date for the next few minutes. A project that produces results after the decision is made has little value. And a project running over budget due to lateness may be cancelled before completion. Success requires appropriate attention to completion dates.

    Late projects are a chronic problem in all types of software development. Let’s start by exploring some of the causes of lateness.

    Expectations – Planning the Journey

    In software development the constraints of Date, Resources, Features, and Quality are well known. You can specify or mandate any one, two, or possibly even three of those factors, but if you try to mandate all four, you will almost certainly fail. For example, I can say I want all features completed with high quality, in 90 days, but then I have to be prepared to allocate resources as necessary. Or if I want it done with a maximum of 3 people, then I must be prepared to slide the date or other constraints. These same aspects apply to most simulation projects – perhaps substituting the word Comprehensiveness for Features and the phrase Validation/ Verification for Quality.

    Since many projects start off in an urgent, budget-constrained status, management often tries to mandate all four constraints. But can I really specify all four constraints (e.g. all features completed with high quality, in 90 days, with a maximum of 3 people)? NO – not unless I have started with a very loose schedule (unlikely with an urgent project). I have generally found that attempting to do so will just mean that I will have no idea, until near the end, by how much each of the constraints will be missed. Note I said “by how much”, not “if”. As the anticipation of missing the date approaches, the pressure will increase at all levels to “cut corners”. Then, to save the viability of the project there is often a last-minute attempt to add resources to “save the date”, but that attempt is usually too late to have much impact.

    Road Construction Next Million Miles

    Assuming that we have reasonable expectations up front, what are some of the other problems that can hijack the schedule?

    Objectives – Poor project objectives, as we discussed last week, is a huge potential problem. If you start with a missing or inadequate functional specification and a poor understanding of project, it is unlikely that you can develop a realistic project plan.

    Optimism – I like to be guided by Murphy’s adage “Anything that can go wrong, will.” Many people think that it is safe to base their project estimates on “reasonable” effort estimates. But “reasonable” often becomes highly optimistic when adjusted by real world situations.

    Stakeholder Involvement – First of all, you need to know who your “customers” are. If you are working for a large organization it might be difficult to determine who all the people are who have a stake in your project. If you are a consultant, this may be a bit easier. But after you identify them, the stakeholders must be involved. If they are not involved then you may be missing the important resources and information, and your project priority may suffer.

    Skills – We are all smart, resourceful people. We all like to believe that we know, or can quickly learn, whatever we need to know to complete the project. But quite often there are many things we don’t know. And even more dangerous, there are things that we don’t even know that we don’t know.

    Of course there are many other areas where you could go wrong – I’ll talk about them in future blogs. For now, maybe give some thought to these concepts and in a future blog we will talk about dealing with this first set of pitfalls.

    Happy modeling!

    Dave Sturrock
    VP Products – Simio LLC